{"title":"基于DBSCAN的云基础设施任务调度算法","authors":"S.M.F D Syed Mustapha , Punit Gupta","doi":"10.1016/j.iotcps.2023.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>Cloud computing in today's computing environment plays a vital role, by providing efficient and scalable computation based on pay per use model. To make computing more reliable and efficient, it must be efficient, and high resources utilized. To improve resource utilization and efficiency in cloud, task scheduling and resource allocation plays a critical role. Many researchers have proposed algorithms to maximize the throughput and resource utilization taking into consideration heterogeneous cloud environments. This work proposes an algorithm using DBSCAN (Density-based spatial clustering) for task scheduling to achieve high efficiency. The proposed DBScan-based task scheduling algorithm aims to improve user task quality of service and improve performance in terms of execution time, average start time and finish time. The experiment result shows proposed model outperforms existing ACO and PSO with 13% improvement in execution time, 49% improvement in average start time and average finish time. The experimental results are compared with existing ACO and PSO algorithms for task scheduling.</p></div>","PeriodicalId":100724,"journal":{"name":"Internet of Things and Cyber-Physical Systems","volume":"4 ","pages":"Pages 32-39"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DBSCAN inspired task scheduling algorithm for cloud infrastructure\",\"authors\":\"S.M.F D Syed Mustapha , Punit Gupta\",\"doi\":\"10.1016/j.iotcps.2023.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cloud computing in today's computing environment plays a vital role, by providing efficient and scalable computation based on pay per use model. To make computing more reliable and efficient, it must be efficient, and high resources utilized. To improve resource utilization and efficiency in cloud, task scheduling and resource allocation plays a critical role. Many researchers have proposed algorithms to maximize the throughput and resource utilization taking into consideration heterogeneous cloud environments. This work proposes an algorithm using DBSCAN (Density-based spatial clustering) for task scheduling to achieve high efficiency. The proposed DBScan-based task scheduling algorithm aims to improve user task quality of service and improve performance in terms of execution time, average start time and finish time. The experiment result shows proposed model outperforms existing ACO and PSO with 13% improvement in execution time, 49% improvement in average start time and average finish time. The experimental results are compared with existing ACO and PSO algorithms for task scheduling.</p></div>\",\"PeriodicalId\":100724,\"journal\":{\"name\":\"Internet of Things and Cyber-Physical Systems\",\"volume\":\"4 \",\"pages\":\"Pages 32-39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet of Things and Cyber-Physical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667345223000445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things and Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667345223000445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DBSCAN inspired task scheduling algorithm for cloud infrastructure
Cloud computing in today's computing environment plays a vital role, by providing efficient and scalable computation based on pay per use model. To make computing more reliable and efficient, it must be efficient, and high resources utilized. To improve resource utilization and efficiency in cloud, task scheduling and resource allocation plays a critical role. Many researchers have proposed algorithms to maximize the throughput and resource utilization taking into consideration heterogeneous cloud environments. This work proposes an algorithm using DBSCAN (Density-based spatial clustering) for task scheduling to achieve high efficiency. The proposed DBScan-based task scheduling algorithm aims to improve user task quality of service and improve performance in terms of execution time, average start time and finish time. The experiment result shows proposed model outperforms existing ACO and PSO with 13% improvement in execution time, 49% improvement in average start time and average finish time. The experimental results are compared with existing ACO and PSO algorithms for task scheduling.