{"title":"具有绝对误差准则的非齐次张量积问题的平均情况可跟踪性","authors":"Guiqiao Xu","doi":"10.1016/j.jco.2023.101743","DOIUrl":null,"url":null,"abstract":"<div><p>We study average case tractability of non-homogeneous tensor product problems with the absolute error criterion. We consider algorithms that use finitely many evaluations of arbitrary linear functionals<span>. For general non-homogeneous tensor product problems, we obtain the matching necessary and sufficient conditions for strong polynomial tractability in terms of the one-dimensional eigenvalues. We give some examples to show that strong polynomial tractability is not equivalent to polynomial tractability, and polynomial tractability is not equivalent to quasi-polynomial tractability. But for non-homogeneous tensor product problems with decreasing eigenvalues, we prove that strong polynomial tractability is always equivalent to polynomial tractability, and strong polynomial tractability is even equivalent to quasi-polynomial tractability when the one-dimensional largest eigenvalues are less than one. In particular, we find an example that quasi-polynomial tractability with the absolute error criterion is not equivalent to that with the normalized error criterion even if all the one-dimensional largest eigenvalues are one. Finally we consider a special class of non-homogeneous tensor product problems with improved monotonicity condition of the eigenvalues.</span></p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"76 ","pages":"Article 101743"},"PeriodicalIF":1.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Average case tractability of non-homogeneous tensor product problems with the absolute error criterion\",\"authors\":\"Guiqiao Xu\",\"doi\":\"10.1016/j.jco.2023.101743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study average case tractability of non-homogeneous tensor product problems with the absolute error criterion. We consider algorithms that use finitely many evaluations of arbitrary linear functionals<span>. For general non-homogeneous tensor product problems, we obtain the matching necessary and sufficient conditions for strong polynomial tractability in terms of the one-dimensional eigenvalues. We give some examples to show that strong polynomial tractability is not equivalent to polynomial tractability, and polynomial tractability is not equivalent to quasi-polynomial tractability. But for non-homogeneous tensor product problems with decreasing eigenvalues, we prove that strong polynomial tractability is always equivalent to polynomial tractability, and strong polynomial tractability is even equivalent to quasi-polynomial tractability when the one-dimensional largest eigenvalues are less than one. In particular, we find an example that quasi-polynomial tractability with the absolute error criterion is not equivalent to that with the normalized error criterion even if all the one-dimensional largest eigenvalues are one. Finally we consider a special class of non-homogeneous tensor product problems with improved monotonicity condition of the eigenvalues.</span></p></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":\"76 \",\"pages\":\"Article 101743\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X23000122\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000122","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Average case tractability of non-homogeneous tensor product problems with the absolute error criterion
We study average case tractability of non-homogeneous tensor product problems with the absolute error criterion. We consider algorithms that use finitely many evaluations of arbitrary linear functionals. For general non-homogeneous tensor product problems, we obtain the matching necessary and sufficient conditions for strong polynomial tractability in terms of the one-dimensional eigenvalues. We give some examples to show that strong polynomial tractability is not equivalent to polynomial tractability, and polynomial tractability is not equivalent to quasi-polynomial tractability. But for non-homogeneous tensor product problems with decreasing eigenvalues, we prove that strong polynomial tractability is always equivalent to polynomial tractability, and strong polynomial tractability is even equivalent to quasi-polynomial tractability when the one-dimensional largest eigenvalues are less than one. In particular, we find an example that quasi-polynomial tractability with the absolute error criterion is not equivalent to that with the normalized error criterion even if all the one-dimensional largest eigenvalues are one. Finally we consider a special class of non-homogeneous tensor product problems with improved monotonicity condition of the eigenvalues.
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.