{"title":"改进了原始功率基下数字网络增益系数的边界","authors":"Takashi Goda , Kosuke Suzuki","doi":"10.1016/j.jco.2022.101722","DOIUrl":null,"url":null,"abstract":"<div><p><span>We study randomized<span> quasi-Monte Carlo integration by scrambled nets. The scrambled net quadrature has long gained its popularity because it is an unbiased estimator of the true integral, allows for a practical error estimation, achieves a high order decay of the variance for smooth functions, and works even for </span></span><span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-functions with any <span><math><mi>p</mi><mo>≥</mo><mn>1</mn></math></span>. The variance of the scrambled net quadrature for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-functions can be evaluated through the set of the so-called <em>gain coefficients.</em></p><p>In this paper, based on the system of Walsh functions and the concept of dual nets, we provide improved upper bounds on the gain coefficients for digital nets in general prime power base. Our results explain the known bound by Owen (1997) for Faure sequences, the recently improved bound by Pan and Owen (2022) for digital nets in base 2 (including Sobol' sequences as a special case), and their finding that all the nonzero gain coefficients for digital nets in base 2 must be powers of two, all in a unified way.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improved bounds on the gain coefficients for digital nets in prime power base\",\"authors\":\"Takashi Goda , Kosuke Suzuki\",\"doi\":\"10.1016/j.jco.2022.101722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We study randomized<span> quasi-Monte Carlo integration by scrambled nets. The scrambled net quadrature has long gained its popularity because it is an unbiased estimator of the true integral, allows for a practical error estimation, achieves a high order decay of the variance for smooth functions, and works even for </span></span><span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-functions with any <span><math><mi>p</mi><mo>≥</mo><mn>1</mn></math></span>. The variance of the scrambled net quadrature for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-functions can be evaluated through the set of the so-called <em>gain coefficients.</em></p><p>In this paper, based on the system of Walsh functions and the concept of dual nets, we provide improved upper bounds on the gain coefficients for digital nets in general prime power base. Our results explain the known bound by Owen (1997) for Faure sequences, the recently improved bound by Pan and Owen (2022) for digital nets in base 2 (including Sobol' sequences as a special case), and their finding that all the nonzero gain coefficients for digital nets in base 2 must be powers of two, all in a unified way.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X22000875\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X22000875","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Improved bounds on the gain coefficients for digital nets in prime power base
We study randomized quasi-Monte Carlo integration by scrambled nets. The scrambled net quadrature has long gained its popularity because it is an unbiased estimator of the true integral, allows for a practical error estimation, achieves a high order decay of the variance for smooth functions, and works even for -functions with any . The variance of the scrambled net quadrature for -functions can be evaluated through the set of the so-called gain coefficients.
In this paper, based on the system of Walsh functions and the concept of dual nets, we provide improved upper bounds on the gain coefficients for digital nets in general prime power base. Our results explain the known bound by Owen (1997) for Faure sequences, the recently improved bound by Pan and Owen (2022) for digital nets in base 2 (including Sobol' sequences as a special case), and their finding that all the nonzero gain coefficients for digital nets in base 2 must be powers of two, all in a unified way.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.