在二维晶格点之间的空轴平行盒的面积

IF 1.8 2区 数学 Q1 MATHEMATICS
Thomas Lachmann, Jaspar Wiart
{"title":"在二维晶格点之间的空轴平行盒的面积","authors":"Thomas Lachmann,&nbsp;Jaspar Wiart","doi":"10.1016/j.jco.2022.101724","DOIUrl":null,"url":null,"abstract":"<div><p>The dispersion of a point set in the unit square is the area of the largest empty axis-parallel box. In this paper we are interested in the dispersion of lattices<span> in the plane, that is, the supremum<span> of the area of the empty axis-parallel boxes amidst the lattice points<span>. We introduce a framework with which to study this based on the continued fractions expansions<span> of the lattice generators. We give necessary and sufficient conditions under which a lattice has finite dispersion. We obtain an exact formula for the dispersion of the lattices associated to subrings of the ring of integers of quadratic fields. We have tight bounds for the dispersion of a lattice based on the largest continued fraction coefficient of the generators, accurate to within one half. We provide an equivalent formulation of Zaremba's conjecture. Using this framework we are able to give very short proofs of previous results.</span></span></span></span></p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"76 ","pages":"Article 101724"},"PeriodicalIF":1.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The area of empty axis-parallel boxes amidst 2-dimensional lattice points\",\"authors\":\"Thomas Lachmann,&nbsp;Jaspar Wiart\",\"doi\":\"10.1016/j.jco.2022.101724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The dispersion of a point set in the unit square is the area of the largest empty axis-parallel box. In this paper we are interested in the dispersion of lattices<span> in the plane, that is, the supremum<span> of the area of the empty axis-parallel boxes amidst the lattice points<span>. We introduce a framework with which to study this based on the continued fractions expansions<span> of the lattice generators. We give necessary and sufficient conditions under which a lattice has finite dispersion. We obtain an exact formula for the dispersion of the lattices associated to subrings of the ring of integers of quadratic fields. We have tight bounds for the dispersion of a lattice based on the largest continued fraction coefficient of the generators, accurate to within one half. We provide an equivalent formulation of Zaremba's conjecture. Using this framework we are able to give very short proofs of previous results.</span></span></span></span></p></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":\"76 \",\"pages\":\"Article 101724\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X22000899\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X22000899","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

单位正方形中点集的散度是最大的空轴平行盒的面积。在本文中,我们感兴趣的是平面上晶格的色散,即晶格点之间的空轴平行盒的面积的最大值。我们引入了一个基于格生成器的连分式展开的框架来研究这一问题。给出了晶格具有有限色散的充分必要条件。我们得到了二次域整数环子带相关格的色散的精确公式。我们根据发生器的最大连分数系数对晶格的色散有严格的界限,精确到二分之一以内。我们提供了Zaremba猜想的等价公式。使用这个框架,我们能够对先前的结果给出非常简短的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The area of empty axis-parallel boxes amidst 2-dimensional lattice points

The dispersion of a point set in the unit square is the area of the largest empty axis-parallel box. In this paper we are interested in the dispersion of lattices in the plane, that is, the supremum of the area of the empty axis-parallel boxes amidst the lattice points. We introduce a framework with which to study this based on the continued fractions expansions of the lattice generators. We give necessary and sufficient conditions under which a lattice has finite dispersion. We obtain an exact formula for the dispersion of the lattices associated to subrings of the ring of integers of quadratic fields. We have tight bounds for the dispersion of a lattice based on the largest continued fraction coefficient of the generators, accurate to within one half. We provide an equivalent formulation of Zaremba's conjecture. Using this framework we are able to give very short proofs of previous results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信