{"title":"在二维晶格点之间的空轴平行盒的面积","authors":"Thomas Lachmann, Jaspar Wiart","doi":"10.1016/j.jco.2022.101724","DOIUrl":null,"url":null,"abstract":"<div><p>The dispersion of a point set in the unit square is the area of the largest empty axis-parallel box. In this paper we are interested in the dispersion of lattices<span> in the plane, that is, the supremum<span> of the area of the empty axis-parallel boxes amidst the lattice points<span>. We introduce a framework with which to study this based on the continued fractions expansions<span> of the lattice generators. We give necessary and sufficient conditions under which a lattice has finite dispersion. We obtain an exact formula for the dispersion of the lattices associated to subrings of the ring of integers of quadratic fields. We have tight bounds for the dispersion of a lattice based on the largest continued fraction coefficient of the generators, accurate to within one half. We provide an equivalent formulation of Zaremba's conjecture. Using this framework we are able to give very short proofs of previous results.</span></span></span></span></p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"76 ","pages":"Article 101724"},"PeriodicalIF":1.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The area of empty axis-parallel boxes amidst 2-dimensional lattice points\",\"authors\":\"Thomas Lachmann, Jaspar Wiart\",\"doi\":\"10.1016/j.jco.2022.101724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The dispersion of a point set in the unit square is the area of the largest empty axis-parallel box. In this paper we are interested in the dispersion of lattices<span> in the plane, that is, the supremum<span> of the area of the empty axis-parallel boxes amidst the lattice points<span>. We introduce a framework with which to study this based on the continued fractions expansions<span> of the lattice generators. We give necessary and sufficient conditions under which a lattice has finite dispersion. We obtain an exact formula for the dispersion of the lattices associated to subrings of the ring of integers of quadratic fields. We have tight bounds for the dispersion of a lattice based on the largest continued fraction coefficient of the generators, accurate to within one half. We provide an equivalent formulation of Zaremba's conjecture. Using this framework we are able to give very short proofs of previous results.</span></span></span></span></p></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":\"76 \",\"pages\":\"Article 101724\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X22000899\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X22000899","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The area of empty axis-parallel boxes amidst 2-dimensional lattice points
The dispersion of a point set in the unit square is the area of the largest empty axis-parallel box. In this paper we are interested in the dispersion of lattices in the plane, that is, the supremum of the area of the empty axis-parallel boxes amidst the lattice points. We introduce a framework with which to study this based on the continued fractions expansions of the lattice generators. We give necessary and sufficient conditions under which a lattice has finite dispersion. We obtain an exact formula for the dispersion of the lattices associated to subrings of the ring of integers of quadratic fields. We have tight bounds for the dispersion of a lattice based on the largest continued fraction coefficient of the generators, accurate to within one half. We provide an equivalent formulation of Zaremba's conjecture. Using this framework we are able to give very short proofs of previous results.
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.