球面和实投影平面上的低能点

IF 1.8 2区 数学 Q1 MATHEMATICS
Carlos Beltrán, Ujué Etayo, Pedro R. López-Gómez
{"title":"球面和实投影平面上的低能点","authors":"Carlos Beltrán,&nbsp;Ujué Etayo,&nbsp;Pedro R. López-Gómez","doi":"10.1016/j.jco.2023.101742","DOIUrl":null,"url":null,"abstract":"<div><p>We present a generalization of a family of points on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, the Diamond ensemble, containing collections of <em>N</em> points on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> with very small logarithmic energy for all <span><math><mi>N</mi><mo>∈</mo><mi>N</mi></math></span>. We extend this construction to the real projective plane <span><math><msup><mrow><mi>RP</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and we obtain upper and lower bounds with explicit constants for the Green and logarithmic energy on this last space.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"76 ","pages":"Article 101742"},"PeriodicalIF":1.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Low-energy points on the sphere and the real projective plane\",\"authors\":\"Carlos Beltrán,&nbsp;Ujué Etayo,&nbsp;Pedro R. López-Gómez\",\"doi\":\"10.1016/j.jco.2023.101742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a generalization of a family of points on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, the Diamond ensemble, containing collections of <em>N</em> points on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> with very small logarithmic energy for all <span><math><mi>N</mi><mo>∈</mo><mi>N</mi></math></span>. We extend this construction to the real projective plane <span><math><msup><mrow><mi>RP</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and we obtain upper and lower bounds with explicit constants for the Green and logarithmic energy on this last space.</p></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":\"76 \",\"pages\":\"Article 101742\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X23000110\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000110","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

我们给出了S2上的点族的推广,即Diamond系综,它包含了S2上N个点的集合,对于所有N∈N,它们的对数能量非常小。我们将这种构造推广到实射影平面RP2上,得到了最后一个空间上Green能量和对数能量的带显式常数的上界和下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-energy points on the sphere and the real projective plane

We present a generalization of a family of points on S2, the Diamond ensemble, containing collections of N points on S2 with very small logarithmic energy for all NN. We extend this construction to the real projective plane RP2 and we obtain upper and lower bounds with explicit constants for the Green and logarithmic energy on this last space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信