低秩矩阵恢复和秩一测量的自适应迭代硬阈值

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yu Xia , Likai Zhou
{"title":"低秩矩阵恢复和秩一测量的自适应迭代硬阈值","authors":"Yu Xia ,&nbsp;Likai Zhou","doi":"10.1016/j.jco.2022.101725","DOIUrl":null,"url":null,"abstract":"<div><p>In low-rank matrix recovery, many kinds of measurements fail to meet the standard restricted isometry property (RIP), such as rank-one measurements, that is, <span><math><msub><mrow><mo>[</mo><mi>A</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>]</mo></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mo>〈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>X</mi><mo>〉</mo></math></span> with <span><math><mtext>rank</mtext><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>1</mn></math></span>, <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>m</mi></math></span><span>. Historical iterative hard thresholding sequence for low-rank matrix recovery and rank-one measurements was taken as </span><span><math><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>n</mi></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mtext>sign</mtext><mo>(</mo><mi>A</mi><mo>(</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>−</mo><mi>y</mi><mo>)</mo><mo>)</mo><mo>)</mo></math></span>, which introduced the “tail” and “head” approximations <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, respectively. In this paper, we remove the term <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span> and provide a new iterative hard thresholding algorithm with adaptive step size (abbreviated as AIHT). The linear convergence analysis and stability results on AIHT are established under the </span><span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>/</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span><span>-RIP. Particularly, we discuss the rank-one Gaussian measurements under the tight upper and lower bounds on </span><span><math><mi>E</mi><msub><mrow><mo>‖</mo><mi>A</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>‖</mo></mrow><mrow><mn>1</mn></mrow></msub></math></span>, and provide better convergence rate and sampling complexity. Besides, several empirical experiments are provided to show that AIHT performs better than the historical rank-one iterative hard thresholding method.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive iterative hard thresholding for low-rank matrix recovery and rank-one measurements\",\"authors\":\"Yu Xia ,&nbsp;Likai Zhou\",\"doi\":\"10.1016/j.jco.2022.101725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In low-rank matrix recovery, many kinds of measurements fail to meet the standard restricted isometry property (RIP), such as rank-one measurements, that is, <span><math><msub><mrow><mo>[</mo><mi>A</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>]</mo></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mo>〈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>X</mi><mo>〉</mo></math></span> with <span><math><mtext>rank</mtext><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>1</mn></math></span>, <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>m</mi></math></span><span>. Historical iterative hard thresholding sequence for low-rank matrix recovery and rank-one measurements was taken as </span><span><math><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>n</mi></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mtext>sign</mtext><mo>(</mo><mi>A</mi><mo>(</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>−</mo><mi>y</mi><mo>)</mo><mo>)</mo><mo>)</mo></math></span>, which introduced the “tail” and “head” approximations <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, respectively. In this paper, we remove the term <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span> and provide a new iterative hard thresholding algorithm with adaptive step size (abbreviated as AIHT). The linear convergence analysis and stability results on AIHT are established under the </span><span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>/</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span><span>-RIP. Particularly, we discuss the rank-one Gaussian measurements under the tight upper and lower bounds on </span><span><math><mi>E</mi><msub><mrow><mo>‖</mo><mi>A</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>‖</mo></mrow><mrow><mn>1</mn></mrow></msub></math></span>, and provide better convergence rate and sampling complexity. Besides, several empirical experiments are provided to show that AIHT performs better than the historical rank-one iterative hard thresholding method.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X22000905\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X22000905","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在低秩矩阵恢复中,有多种测量值不满足标准的受限等距性质(RIP),如秩一测量值,即[A(X)]i= < Ai,X >与秩(Ai)=1, i=1,…,m。低秩矩阵恢复和秩一测量的历史迭代硬阈值序列为Xn+1=Ps(Xn−μnPt(A sign(A(Xn)−y)))),分别引入了“尾”近似和“头”近似Ps和Pt。在本文中,我们去掉了Pt项,提出了一种新的自适应步长迭代硬阈值算法(简称AIHT)。在1/ 2-RIP条件下,建立了AIHT的线性收敛分析和稳定性结果。特别地,我们讨论了E‖A(X)‖1紧上界和下界下的秩一高斯测量,并提供了更好的收敛速率和采样复杂度。此外,还提供了一些经验实验,表明AIHT优于历史秩一迭代硬阈值法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive iterative hard thresholding for low-rank matrix recovery and rank-one measurements

In low-rank matrix recovery, many kinds of measurements fail to meet the standard restricted isometry property (RIP), such as rank-one measurements, that is, [A(X)]i=Ai,X with rank(Ai)=1, i=1,...,m. Historical iterative hard thresholding sequence for low-rank matrix recovery and rank-one measurements was taken as Xn+1=Ps(XnμnPt(Asign(A(Xn)y))), which introduced the “tail” and “head” approximations Ps and Pt, respectively. In this paper, we remove the term Pt and provide a new iterative hard thresholding algorithm with adaptive step size (abbreviated as AIHT). The linear convergence analysis and stability results on AIHT are established under the 1/2-RIP. Particularly, we discuss the rank-one Gaussian measurements under the tight upper and lower bounds on EA(X)1, and provide better convergence rate and sampling complexity. Besides, several empirical experiments are provided to show that AIHT performs better than the historical rank-one iterative hard thresholding method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信