物联网与建筑信息建模相结合的结构健康监测信息可视化

Micheal Sakr, Ayan Sadhu
{"title":"物联网与建筑信息建模相结合的结构健康监测信息可视化","authors":"Micheal Sakr,&nbsp;Ayan Sadhu","doi":"10.1016/j.iintel.2023.100053","DOIUrl":null,"url":null,"abstract":"<div><p>Structural Health Monitoring (SHM) has become a paramount necessity in civil engineering for improving the operational performance of aging infrastructure. Recent monitoring techniques have utilized emerging technologies in Industry 4.0, such as the Internet of Things, Big Data analytics, cloud computing, and cybersecurity, to automate SHM methodologies. However, they have found challenges in linking these technologies and developing an autonomous, well-established digital framework for applications of SHM. Visualizing processed SHM data in a real-time digital interface generates multiple obstacles, such as witnessing delays in data transfer and resorting to offline tools for manual data processing. This paper, therefore, explores the integration of Building Information Modeling (BIM) and the Internet of Things (IoT) through an Arduino micro-processing unit for tracking and visualizing the data from the time and frequency domains. Strategies for enabling data monitoring and processing are developed while continuously acquiring structural responses. The query of data is established in a web-based database instead of storing the data in offline resources that await manual intervention. The proposed real-time SHM methodology is validated experimentally using two practical applications: a dynamically moving vehicle over a simply-supported bridge prototype and a randomly excited three-story model with real-time visualization of both time- and frequency-domain information under undamaged and damaged conditions. The proposed research develops an early-phase Digital Twin (DT) to present static and real-time dynamic data in a rich-fed BIM database.</p></div>","PeriodicalId":100791,"journal":{"name":"Journal of Infrastructure Intelligence and Resilience","volume":"2 3","pages":"Article 100053"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Visualization of structural health monitoring information using Internet-of-Things integrated with building information modeling\",\"authors\":\"Micheal Sakr,&nbsp;Ayan Sadhu\",\"doi\":\"10.1016/j.iintel.2023.100053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Structural Health Monitoring (SHM) has become a paramount necessity in civil engineering for improving the operational performance of aging infrastructure. Recent monitoring techniques have utilized emerging technologies in Industry 4.0, such as the Internet of Things, Big Data analytics, cloud computing, and cybersecurity, to automate SHM methodologies. However, they have found challenges in linking these technologies and developing an autonomous, well-established digital framework for applications of SHM. Visualizing processed SHM data in a real-time digital interface generates multiple obstacles, such as witnessing delays in data transfer and resorting to offline tools for manual data processing. This paper, therefore, explores the integration of Building Information Modeling (BIM) and the Internet of Things (IoT) through an Arduino micro-processing unit for tracking and visualizing the data from the time and frequency domains. Strategies for enabling data monitoring and processing are developed while continuously acquiring structural responses. The query of data is established in a web-based database instead of storing the data in offline resources that await manual intervention. The proposed real-time SHM methodology is validated experimentally using two practical applications: a dynamically moving vehicle over a simply-supported bridge prototype and a randomly excited three-story model with real-time visualization of both time- and frequency-domain information under undamaged and damaged conditions. The proposed research develops an early-phase Digital Twin (DT) to present static and real-time dynamic data in a rich-fed BIM database.</p></div>\",\"PeriodicalId\":100791,\"journal\":{\"name\":\"Journal of Infrastructure Intelligence and Resilience\",\"volume\":\"2 3\",\"pages\":\"Article 100053\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Infrastructure Intelligence and Resilience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772991523000282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrastructure Intelligence and Resilience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772991523000282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

结构健康监测(SHM)已成为土木工程中提高老化基础设施运行性能的重要手段。最近的监测技术利用了工业4.0中的新兴技术,如物联网、大数据分析、云计算和网络安全,使SHM方法自动化。然而,他们发现在连接这些技术和为SHM应用开发一个自主的、完善的数字框架方面存在挑战。在实时数字界面中可视化处理后的SHM数据会产生多种障碍,例如见证数据传输的延迟以及求助于离线工具进行手动数据处理。因此,本文通过Arduino微处理单元探索建筑信息模型(BIM)与物联网(IoT)的集成,从时域和频域对数据进行跟踪和可视化。在不断获取结构响应的同时,制定了数据监测和处理的战略。数据查询建立在基于web的数据库中,而不是将数据存储在等待人工干预的离线资源中。通过两种实际应用验证了所提出的实时SHM方法:一种是在简支桥原型上动态移动的车辆,另一种是在未损坏和损坏情况下具有实时时域和频域信息可视化的随机激励三层模型。拟议的研究开发了一个早期的数字孪生(DT),在一个丰富的BIM数据库中呈现静态和实时动态数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualization of structural health monitoring information using Internet-of-Things integrated with building information modeling

Structural Health Monitoring (SHM) has become a paramount necessity in civil engineering for improving the operational performance of aging infrastructure. Recent monitoring techniques have utilized emerging technologies in Industry 4.0, such as the Internet of Things, Big Data analytics, cloud computing, and cybersecurity, to automate SHM methodologies. However, they have found challenges in linking these technologies and developing an autonomous, well-established digital framework for applications of SHM. Visualizing processed SHM data in a real-time digital interface generates multiple obstacles, such as witnessing delays in data transfer and resorting to offline tools for manual data processing. This paper, therefore, explores the integration of Building Information Modeling (BIM) and the Internet of Things (IoT) through an Arduino micro-processing unit for tracking and visualizing the data from the time and frequency domains. Strategies for enabling data monitoring and processing are developed while continuously acquiring structural responses. The query of data is established in a web-based database instead of storing the data in offline resources that await manual intervention. The proposed real-time SHM methodology is validated experimentally using two practical applications: a dynamically moving vehicle over a simply-supported bridge prototype and a randomly excited three-story model with real-time visualization of both time- and frequency-domain information under undamaged and damaged conditions. The proposed research develops an early-phase Digital Twin (DT) to present static and real-time dynamic data in a rich-fed BIM database.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信