Furstenberg-Sárközy定理的一个类比和有限域上韦林问题的一个替代解

IF 0.8 4区 数学 Q2 MATHEMATICS
Yeşi̇m Demi̇roğlu Karabulut
{"title":"Furstenberg-Sárközy定理的一个类比和有限域上韦林问题的一个替代解","authors":"Yeşi̇m Demi̇roğlu Karabulut","doi":"10.1016/j.exmath.2022.10.003","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we use Cayley digraphs to obtain some new self-contained proofs for Waring’s problem over finite fields, proving that any element of a finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> can be written as a sum of <span><math><mi>m</mi></math></span> many <span><math><mrow><mi>k</mi><mtext>th</mtext></mrow></math></span> powers as long as <span><math><mrow><mi>q</mi><mo>&gt;</mo><msup><mrow><mi>k</mi></mrow><mrow><mfrac><mrow><mn>2</mn><mi>m</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup></mrow></math></span>; and we also compute the smallest positive integers <span><math><mi>m</mi></math></span> such that every element of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> can be written as a sum of <span><math><mi>m</mi></math></span> many <span><math><mrow><mi>k</mi><mtext>th</mtext></mrow></math></span> powers for all <span><math><mi>q</mi></math></span> too small to be covered by the above mentioned results when <span><math><mrow><mn>2</mn><mo>⩽</mo><mi>k</mi><mo>⩽</mo><mn>37</mn></mrow></math></span>.</p><p>In the process of developing the proofs mentioned above, we arrive at another result (providing a finite field analogue of Furstenberg–Sárközy’s Theorem) showing that any subset <span><math><mi>E</mi></math></span> of a finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> for which <span><math><mrow><mrow><mo>|</mo><mi>E</mi><mo>|</mo></mrow><mo>&gt;</mo><mfrac><mrow><mi>q</mi><mi>k</mi></mrow><mrow><msqrt><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msqrt></mrow></mfrac></mrow></math></span> must contain at least two distinct elements whose difference is a <span><math><mrow><mi>k</mi><mtext>th</mtext></mrow></math></span> power.</p></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An analogue of Furstenberg–Sárközy’s theorem and an alternative solution to Waring’s problem over finite fields\",\"authors\":\"Yeşi̇m Demi̇roğlu Karabulut\",\"doi\":\"10.1016/j.exmath.2022.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we use Cayley digraphs to obtain some new self-contained proofs for Waring’s problem over finite fields, proving that any element of a finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> can be written as a sum of <span><math><mi>m</mi></math></span> many <span><math><mrow><mi>k</mi><mtext>th</mtext></mrow></math></span> powers as long as <span><math><mrow><mi>q</mi><mo>&gt;</mo><msup><mrow><mi>k</mi></mrow><mrow><mfrac><mrow><mn>2</mn><mi>m</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup></mrow></math></span>; and we also compute the smallest positive integers <span><math><mi>m</mi></math></span> such that every element of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> can be written as a sum of <span><math><mi>m</mi></math></span> many <span><math><mrow><mi>k</mi><mtext>th</mtext></mrow></math></span> powers for all <span><math><mi>q</mi></math></span> too small to be covered by the above mentioned results when <span><math><mrow><mn>2</mn><mo>⩽</mo><mi>k</mi><mo>⩽</mo><mn>37</mn></mrow></math></span>.</p><p>In the process of developing the proofs mentioned above, we arrive at another result (providing a finite field analogue of Furstenberg–Sárközy’s Theorem) showing that any subset <span><math><mi>E</mi></math></span> of a finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> for which <span><math><mrow><mrow><mo>|</mo><mi>E</mi><mo>|</mo></mrow><mo>&gt;</mo><mfrac><mrow><mi>q</mi><mi>k</mi></mrow><mrow><msqrt><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msqrt></mrow></mfrac></mrow></math></span> must contain at least two distinct elements whose difference is a <span><math><mrow><mi>k</mi><mtext>th</mtext></mrow></math></span> power.</p></div>\",\"PeriodicalId\":50458,\"journal\":{\"name\":\"Expositiones Mathematicae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expositiones Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0723086922000627\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expositiones Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723086922000627","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用Cayley有向图给出了有限域上Waring问题的一些新的自包含证明,证明了有限域上的任意元素Fq可以写成m个k次幂的和,只要q>k2mm−1;并且我们还计算了最小的正整数m,使得Fq的每个元素都可以写成m个k次幂的和,当2≤k≤37时,所有的q都太小而不能被上述结果覆盖。在发展上述证明的过程中,我们得到了另一个结果(提供Furstenberg-Sárközy定理的有限域模拟),表明|E|>qkq−1的有限域Fq的任何子集E必须包含至少两个不同的元素,其差值为k次幂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An analogue of Furstenberg–Sárközy’s theorem and an alternative solution to Waring’s problem over finite fields

In this paper, we use Cayley digraphs to obtain some new self-contained proofs for Waring’s problem over finite fields, proving that any element of a finite field Fq can be written as a sum of m many kth powers as long as q>k2mm1; and we also compute the smallest positive integers m such that every element of Fq can be written as a sum of m many kth powers for all q too small to be covered by the above mentioned results when 2k37.

In the process of developing the proofs mentioned above, we arrive at another result (providing a finite field analogue of Furstenberg–Sárközy’s Theorem) showing that any subset E of a finite field Fq for which |E|>qkq1 must contain at least two distinct elements whose difference is a kth power.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
41
审稿时长
40 days
期刊介绍: Our aim is to publish papers of interest to a wide mathematical audience. Our main interest is in expository articles that make high-level research results more widely accessible. In general, material submitted should be at least at the graduate level.Main articles must be written in such a way that a graduate-level research student interested in the topic of the paper can read them profitably. When the topic is quite specialized, or the main focus is a narrow research result, the paper is probably not appropriate for this journal. Most original research articles are not suitable for this journal, unless they have particularly broad appeal.Mathematical notes can be more focused than main articles. These should not simply be short research articles, but should address a mathematical question with reasonably broad appeal. Elementary solutions of elementary problems are typically not appropriate. Neither are overly technical papers, which should best be submitted to a specialized research journal.Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication. Submitted papers are subject to a quick overview before entering into a more detailed review process. All published papers have been refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信