最佳恢复和容量估计

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Alexander Kushpel
{"title":"最佳恢复和容量估计","authors":"Alexander Kushpel","doi":"10.1016/j.jco.2023.101780","DOIUrl":null,"url":null,"abstract":"<div><p>We study volumes of sections of convex origin-symmetric bodies in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span> induced by orthonormal systems on probability spaces. The approach is based on volume estimates of John-Löwner ellipsoids and expectations of norms induced by the respective systems. The estimates obtained allow us to establish lower bounds for the radii of sections which gives lower bounds for Gelfand widths (or linear cowidths). As an application we offer a new method of evaluation of Gelfand and Kolmogorov widths of multiplier operators. In particular, we establish sharp orders of widths of standard Sobolev classes </span><span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>γ</mi></mrow></msubsup></math></span>, <span><math><mi>γ</mi><mo>&gt;</mo><mn>0</mn></math></span> in <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> on two-point homogeneous spaces in the difficult case, i.e. if <span><math><mn>1</mn><mo>&lt;</mo><mi>q</mi><mo>≤</mo><mi>p</mi><mo>≤</mo><mo>∞</mo></math></span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal recovery and volume estimates\",\"authors\":\"Alexander Kushpel\",\"doi\":\"10.1016/j.jco.2023.101780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study volumes of sections of convex origin-symmetric bodies in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span> induced by orthonormal systems on probability spaces. The approach is based on volume estimates of John-Löwner ellipsoids and expectations of norms induced by the respective systems. The estimates obtained allow us to establish lower bounds for the radii of sections which gives lower bounds for Gelfand widths (or linear cowidths). As an application we offer a new method of evaluation of Gelfand and Kolmogorov widths of multiplier operators. In particular, we establish sharp orders of widths of standard Sobolev classes </span><span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>γ</mi></mrow></msubsup></math></span>, <span><math><mi>γ</mi><mo>&gt;</mo><mn>0</mn></math></span> in <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> on two-point homogeneous spaces in the difficult case, i.e. if <span><math><mn>1</mn><mo>&lt;</mo><mi>q</mi><mo>≤</mo><mi>p</mi><mo>≤</mo><mo>∞</mo></math></span>.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X23000493\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000493","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了由概率空间上的正交系统诱导的Rn中凸原点对称体的截面体积。该方法基于John-Löwner椭球体的体积估计和各自系统引起的规范期望。得到的估计使我们能够建立截面半径的下界,从而给出Gelfand宽度(或线性宽度)的下界。作为应用,我们给出了一种新的求乘子算子的Gelfand宽度和Kolmogorov宽度的方法。特别地,我们在两点齐次空间上,即当1<q≤p≤∞的困难情况下,建立了Lq上标准Sobolev类Wpγ, γ>0的宽度的尖锐阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal recovery and volume estimates

We study volumes of sections of convex origin-symmetric bodies in Rn induced by orthonormal systems on probability spaces. The approach is based on volume estimates of John-Löwner ellipsoids and expectations of norms induced by the respective systems. The estimates obtained allow us to establish lower bounds for the radii of sections which gives lower bounds for Gelfand widths (or linear cowidths). As an application we offer a new method of evaluation of Gelfand and Kolmogorov widths of multiplier operators. In particular, we establish sharp orders of widths of standard Sobolev classes Wpγ, γ>0 in Lq on two-point homogeneous spaces in the difficult case, i.e. if 1<qp.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信