{"title":"有限p的lp差异的维数诅咒","authors":"Erich Novak , Friedrich Pillichshammer","doi":"10.1016/j.jco.2023.101769","DOIUrl":null,"url":null,"abstract":"<div><p>The <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-discrepancy is a quantitative measure for the irregularity of distribution of an <em>N</em>-element point set in the <em>d</em>-dimensional unit-cube, which is closely related to the worst-case error of quasi-Monte Carlo algorithms for numerical integration. It's inverse for dimension <em>d</em> and error threshold <span><math><mi>ε</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> is the minimal number of points in <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>d</mi></mrow></msup></math></span> such that the minimal normalized <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-discrepancy is less or equal <em>ε</em>. It is well known, that the inverse of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-discrepancy grows exponentially fast with the dimension <em>d</em>, i.e., we have the curse of dimensionality, whereas the inverse of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-discrepancy depends exactly linearly on <em>d</em>. The behavior of inverse of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-discrepancy for general <span><math><mi>p</mi><mo>∉</mo><mo>{</mo><mn>2</mn><mo>,</mo><mo>∞</mo><mo>}</mo></math></span> has been an open problem for many years. In this paper we show that the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-discrepancy suffers from the curse of dimensionality for all <em>p</em> in <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></math></span> which are of the form <span><math><mi>p</mi><mo>=</mo><mn>2</mn><mi>ℓ</mi><mo>/</mo><mo>(</mo><mn>2</mn><mi>ℓ</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> with <span><math><mi>ℓ</mi><mo>∈</mo><mi>N</mi></math></span>.</p><p>This result follows from a more general result that we show for the worst-case error of numerical integration in an anchored Sobolev space with anchor 0 of once differentiable functions in each variable whose first derivative has finite <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-norm, where <em>q</em> is an even positive integer satisfying <span><math><mn>1</mn><mo>/</mo><mi>p</mi><mo>+</mo><mn>1</mn><mo>/</mo><mi>q</mi><mo>=</mo><mn>1</mn></math></span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The curse of dimensionality for the Lp-discrepancy with finite p\",\"authors\":\"Erich Novak , Friedrich Pillichshammer\",\"doi\":\"10.1016/j.jco.2023.101769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-discrepancy is a quantitative measure for the irregularity of distribution of an <em>N</em>-element point set in the <em>d</em>-dimensional unit-cube, which is closely related to the worst-case error of quasi-Monte Carlo algorithms for numerical integration. It's inverse for dimension <em>d</em> and error threshold <span><math><mi>ε</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> is the minimal number of points in <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>d</mi></mrow></msup></math></span> such that the minimal normalized <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-discrepancy is less or equal <em>ε</em>. It is well known, that the inverse of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-discrepancy grows exponentially fast with the dimension <em>d</em>, i.e., we have the curse of dimensionality, whereas the inverse of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-discrepancy depends exactly linearly on <em>d</em>. The behavior of inverse of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-discrepancy for general <span><math><mi>p</mi><mo>∉</mo><mo>{</mo><mn>2</mn><mo>,</mo><mo>∞</mo><mo>}</mo></math></span> has been an open problem for many years. In this paper we show that the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-discrepancy suffers from the curse of dimensionality for all <em>p</em> in <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></math></span> which are of the form <span><math><mi>p</mi><mo>=</mo><mn>2</mn><mi>ℓ</mi><mo>/</mo><mo>(</mo><mn>2</mn><mi>ℓ</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> with <span><math><mi>ℓ</mi><mo>∈</mo><mi>N</mi></math></span>.</p><p>This result follows from a more general result that we show for the worst-case error of numerical integration in an anchored Sobolev space with anchor 0 of once differentiable functions in each variable whose first derivative has finite <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-norm, where <em>q</em> is an even positive integer satisfying <span><math><mn>1</mn><mo>/</mo><mi>p</mi><mo>+</mo><mn>1</mn><mo>/</mo><mi>q</mi><mo>=</mo><mn>1</mn></math></span>.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X23000389\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000389","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The curse of dimensionality for the Lp-discrepancy with finite p
The -discrepancy is a quantitative measure for the irregularity of distribution of an N-element point set in the d-dimensional unit-cube, which is closely related to the worst-case error of quasi-Monte Carlo algorithms for numerical integration. It's inverse for dimension d and error threshold is the minimal number of points in such that the minimal normalized -discrepancy is less or equal ε. It is well known, that the inverse of -discrepancy grows exponentially fast with the dimension d, i.e., we have the curse of dimensionality, whereas the inverse of -discrepancy depends exactly linearly on d. The behavior of inverse of -discrepancy for general has been an open problem for many years. In this paper we show that the -discrepancy suffers from the curse of dimensionality for all p in which are of the form with .
This result follows from a more general result that we show for the worst-case error of numerical integration in an anchored Sobolev space with anchor 0 of once differentiable functions in each variable whose first derivative has finite -norm, where q is an even positive integer satisfying .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.