{"title":"有限p的lp差异的维数诅咒","authors":"Erich Novak , Friedrich Pillichshammer","doi":"10.1016/j.jco.2023.101769","DOIUrl":null,"url":null,"abstract":"<div><p>The <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-discrepancy is a quantitative measure for the irregularity of distribution of an <em>N</em>-element point set in the <em>d</em>-dimensional unit-cube, which is closely related to the worst-case error of quasi-Monte Carlo algorithms for numerical integration. It's inverse for dimension <em>d</em> and error threshold <span><math><mi>ε</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> is the minimal number of points in <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>d</mi></mrow></msup></math></span> such that the minimal normalized <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-discrepancy is less or equal <em>ε</em>. It is well known, that the inverse of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-discrepancy grows exponentially fast with the dimension <em>d</em>, i.e., we have the curse of dimensionality, whereas the inverse of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-discrepancy depends exactly linearly on <em>d</em>. The behavior of inverse of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-discrepancy for general <span><math><mi>p</mi><mo>∉</mo><mo>{</mo><mn>2</mn><mo>,</mo><mo>∞</mo><mo>}</mo></math></span> has been an open problem for many years. In this paper we show that the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-discrepancy suffers from the curse of dimensionality for all <em>p</em> in <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></math></span> which are of the form <span><math><mi>p</mi><mo>=</mo><mn>2</mn><mi>ℓ</mi><mo>/</mo><mo>(</mo><mn>2</mn><mi>ℓ</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> with <span><math><mi>ℓ</mi><mo>∈</mo><mi>N</mi></math></span>.</p><p>This result follows from a more general result that we show for the worst-case error of numerical integration in an anchored Sobolev space with anchor 0 of once differentiable functions in each variable whose first derivative has finite <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-norm, where <em>q</em> is an even positive integer satisfying <span><math><mn>1</mn><mo>/</mo><mi>p</mi><mo>+</mo><mn>1</mn><mo>/</mo><mi>q</mi><mo>=</mo><mn>1</mn></math></span>.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"79 ","pages":"Article 101769"},"PeriodicalIF":1.8000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The curse of dimensionality for the Lp-discrepancy with finite p\",\"authors\":\"Erich Novak , Friedrich Pillichshammer\",\"doi\":\"10.1016/j.jco.2023.101769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-discrepancy is a quantitative measure for the irregularity of distribution of an <em>N</em>-element point set in the <em>d</em>-dimensional unit-cube, which is closely related to the worst-case error of quasi-Monte Carlo algorithms for numerical integration. It's inverse for dimension <em>d</em> and error threshold <span><math><mi>ε</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> is the minimal number of points in <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>d</mi></mrow></msup></math></span> such that the minimal normalized <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-discrepancy is less or equal <em>ε</em>. It is well known, that the inverse of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-discrepancy grows exponentially fast with the dimension <em>d</em>, i.e., we have the curse of dimensionality, whereas the inverse of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-discrepancy depends exactly linearly on <em>d</em>. The behavior of inverse of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-discrepancy for general <span><math><mi>p</mi><mo>∉</mo><mo>{</mo><mn>2</mn><mo>,</mo><mo>∞</mo><mo>}</mo></math></span> has been an open problem for many years. In this paper we show that the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-discrepancy suffers from the curse of dimensionality for all <em>p</em> in <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></math></span> which are of the form <span><math><mi>p</mi><mo>=</mo><mn>2</mn><mi>ℓ</mi><mo>/</mo><mo>(</mo><mn>2</mn><mi>ℓ</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> with <span><math><mi>ℓ</mi><mo>∈</mo><mi>N</mi></math></span>.</p><p>This result follows from a more general result that we show for the worst-case error of numerical integration in an anchored Sobolev space with anchor 0 of once differentiable functions in each variable whose first derivative has finite <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-norm, where <em>q</em> is an even positive integer satisfying <span><math><mn>1</mn><mo>/</mo><mi>p</mi><mo>+</mo><mn>1</mn><mo>/</mo><mi>q</mi><mo>=</mo><mn>1</mn></math></span>.</p></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":\"79 \",\"pages\":\"Article 101769\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X23000389\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000389","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The curse of dimensionality for the Lp-discrepancy with finite p
The -discrepancy is a quantitative measure for the irregularity of distribution of an N-element point set in the d-dimensional unit-cube, which is closely related to the worst-case error of quasi-Monte Carlo algorithms for numerical integration. It's inverse for dimension d and error threshold is the minimal number of points in such that the minimal normalized -discrepancy is less or equal ε. It is well known, that the inverse of -discrepancy grows exponentially fast with the dimension d, i.e., we have the curse of dimensionality, whereas the inverse of -discrepancy depends exactly linearly on d. The behavior of inverse of -discrepancy for general has been an open problem for many years. In this paper we show that the -discrepancy suffers from the curse of dimensionality for all p in which are of the form with .
This result follows from a more general result that we show for the worst-case error of numerical integration in an anchored Sobolev space with anchor 0 of once differentiable functions in each variable whose first derivative has finite -norm, where q is an even positive integer satisfying .
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.