通过1-最小化得到平滑类的采样个数

IF 1.8 2区 数学 Q1 MATHEMATICS
Thomas Jahn , Tino Ullrich , Felix Voigtlaender
{"title":"通过1-最小化得到平滑类的采样个数","authors":"Thomas Jahn ,&nbsp;Tino Ullrich ,&nbsp;Felix Voigtlaender","doi":"10.1016/j.jco.2023.101786","DOIUrl":null,"url":null,"abstract":"<div><p>Using techniques developed recently in the field of compressed sensing we prove new upper bounds for general (nonlinear) sampling numbers of (quasi-)Banach smoothness spaces in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span>. In particular, we show that in relevant cases such as mixed and isotropic weighted Wiener classes or Sobolev spaces with mixed smoothness, sampling numbers in </span><span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> can be upper bounded by best <em>n</em><span>-term trigonometric widths in </span><span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>. We describe a recovery procedure from <em>m</em> function values based on <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-minimization (basis pursuit denoising). With this method, a significant gain in the rate of convergence compared to recently developed linear recovery methods is achieved. In this deterministic worst-case setting we see an additional speed-up of <span><math><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span> (up to log factors) compared to linear methods in case of weighted Wiener spaces. For their quasi-Banach counterparts even arbitrary polynomial speed-up is possible. Surprisingly, our approach allows to recover mixed smoothness Sobolev functions belonging to <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mi>W</mi><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> on the <em>d</em>-torus with a logarithmically better rate of convergence than any linear method can achieve when <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mn>2</mn></math></span> and <em>d</em> is large. This effect is not present for isotropic Sobolev spaces.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"79 ","pages":"Article 101786"},"PeriodicalIF":1.8000,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sampling numbers of smoothness classes via ℓ1-minimization\",\"authors\":\"Thomas Jahn ,&nbsp;Tino Ullrich ,&nbsp;Felix Voigtlaender\",\"doi\":\"10.1016/j.jco.2023.101786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using techniques developed recently in the field of compressed sensing we prove new upper bounds for general (nonlinear) sampling numbers of (quasi-)Banach smoothness spaces in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span>. In particular, we show that in relevant cases such as mixed and isotropic weighted Wiener classes or Sobolev spaces with mixed smoothness, sampling numbers in </span><span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> can be upper bounded by best <em>n</em><span>-term trigonometric widths in </span><span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>. We describe a recovery procedure from <em>m</em> function values based on <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-minimization (basis pursuit denoising). With this method, a significant gain in the rate of convergence compared to recently developed linear recovery methods is achieved. In this deterministic worst-case setting we see an additional speed-up of <span><math><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span> (up to log factors) compared to linear methods in case of weighted Wiener spaces. For their quasi-Banach counterparts even arbitrary polynomial speed-up is possible. Surprisingly, our approach allows to recover mixed smoothness Sobolev functions belonging to <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mi>W</mi><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> on the <em>d</em>-torus with a logarithmically better rate of convergence than any linear method can achieve when <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mn>2</mn></math></span> and <em>d</em> is large. This effect is not present for isotropic Sobolev spaces.</p></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":\"79 \",\"pages\":\"Article 101786\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X23000559\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000559","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用压缩感知领域最新发展的技术,我们证明了L2中(拟)Banach平滑空间的一般(非线性)采样数的新上界。特别地,我们证明了在相关的情况下,如混合和各向同性加权Wiener类或具有混合平滑性的Sobolev空间,L2中的采样数可以由L∞上的最佳n项三角宽度上界。我们描述了基于1-最小化(基追求去噪)的m个函数值的恢复过程。与最近开发的线性恢复方法相比,这种方法的收敛速度有了显著的提高。在这种确定的最坏情况设置中,我们看到与加权维纳空间的线性方法相比,m−1/2(高达对数因子)的额外加速。对于它们的拟巴拿赫对应物,甚至任意多项式加速是可能的。令人惊讶的是,当1<p<2和d较大时,我们的方法允许恢复d环面上属于SprW(Td)的混合平滑Sobolev函数,其收敛速度比任何线性方法都要高。这种效应在各向同性索博列夫空间中不存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sampling numbers of smoothness classes via ℓ1-minimization

Using techniques developed recently in the field of compressed sensing we prove new upper bounds for general (nonlinear) sampling numbers of (quasi-)Banach smoothness spaces in L2. In particular, we show that in relevant cases such as mixed and isotropic weighted Wiener classes or Sobolev spaces with mixed smoothness, sampling numbers in L2 can be upper bounded by best n-term trigonometric widths in L. We describe a recovery procedure from m function values based on 1-minimization (basis pursuit denoising). With this method, a significant gain in the rate of convergence compared to recently developed linear recovery methods is achieved. In this deterministic worst-case setting we see an additional speed-up of m1/2 (up to log factors) compared to linear methods in case of weighted Wiener spaces. For their quasi-Banach counterparts even arbitrary polynomial speed-up is possible. Surprisingly, our approach allows to recover mixed smoothness Sobolev functions belonging to SprW(Td) on the d-torus with a logarithmically better rate of convergence than any linear method can achieve when 1<p<2 and d is large. This effect is not present for isotropic Sobolev spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信