{"title":"用深度神经网络逼近平滑和稀疏函数:最优逼近率和饱和度","authors":"Xia Liu","doi":"10.1016/j.jco.2023.101783","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Constructing neural networks for function approximation is a classical and longstanding topic in </span>approximation theory. In this paper, we aim at constructing </span>deep neural networks with three hidden layers using a sigmoidal activation function to approximate smooth and sparse functions. Specifically, we prove that the constructed deep nets with controllable magnitude of free parameters can reach the optimal approximation rate in approximating both smooth and sparse functions. In particular, we prove that neural networks with three hidden layers can avoid the phenomenon of saturation, i.e., the phenomenon that for some neural network architectures, the approximation rate stops improving for functions of very high smoothness.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"79 ","pages":"Article 101783"},"PeriodicalIF":1.8000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Approximating smooth and sparse functions by deep neural networks: Optimal approximation rates and saturation\",\"authors\":\"Xia Liu\",\"doi\":\"10.1016/j.jco.2023.101783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Constructing neural networks for function approximation is a classical and longstanding topic in </span>approximation theory. In this paper, we aim at constructing </span>deep neural networks with three hidden layers using a sigmoidal activation function to approximate smooth and sparse functions. Specifically, we prove that the constructed deep nets with controllable magnitude of free parameters can reach the optimal approximation rate in approximating both smooth and sparse functions. In particular, we prove that neural networks with three hidden layers can avoid the phenomenon of saturation, i.e., the phenomenon that for some neural network architectures, the approximation rate stops improving for functions of very high smoothness.</p></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":\"79 \",\"pages\":\"Article 101783\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X23000523\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000523","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Approximating smooth and sparse functions by deep neural networks: Optimal approximation rates and saturation
Constructing neural networks for function approximation is a classical and longstanding topic in approximation theory. In this paper, we aim at constructing deep neural networks with three hidden layers using a sigmoidal activation function to approximate smooth and sparse functions. Specifically, we prove that the constructed deep nets with controllable magnitude of free parameters can reach the optimal approximation rate in approximating both smooth and sparse functions. In particular, we prove that neural networks with three hidden layers can avoid the phenomenon of saturation, i.e., the phenomenon that for some neural network architectures, the approximation rate stops improving for functions of very high smoothness.
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.