{"title":"窄框架下均值方差偏好下的最优保险设计","authors":"Xiaoqing Liang , Wenjun Jiang , Yiying Zhang","doi":"10.1016/j.insmatheco.2023.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study an optimal insurance design problem under mean-variance criterion by considering the local gain-loss utility of the net payoff of insurance, namely, narrow framing. We extend the existing results in the literature to the case where the decision maker has mean-variance preference with a constraint on the expected utility of the net payoff of insurance, where the premium is determined by the mean-variance premium principle. We first show the existence and uniqueness of the optimal solution to the main problem studied in the paper. We find that the optimal indemnity function involves a deductible provided that the safety loading imposed on the “mean part” of the premium principle is strictly positive. Our main result shows that narrow framing indeed reduces the demand for insurance. The explicit optimal indemnity functions are derived under two special local gain-loss utility functions – the quadratic utility function and the piecewise linear utility function. As a spin-off result, the Bowley solution is also derived for a Stackelberg game between the decision maker and the insurer under the quadratic local gain-loss utility function. Several numerical examples are presented to further analyze the effects of narrow framing on the optimal indemnity function as well as the interests of both parties.</p></div>","PeriodicalId":54974,"journal":{"name":"Insurance Mathematics & Economics","volume":"112 ","pages":"Pages 59-79"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal insurance design under mean-variance preference with narrow framing\",\"authors\":\"Xiaoqing Liang , Wenjun Jiang , Yiying Zhang\",\"doi\":\"10.1016/j.insmatheco.2023.06.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study an optimal insurance design problem under mean-variance criterion by considering the local gain-loss utility of the net payoff of insurance, namely, narrow framing. We extend the existing results in the literature to the case where the decision maker has mean-variance preference with a constraint on the expected utility of the net payoff of insurance, where the premium is determined by the mean-variance premium principle. We first show the existence and uniqueness of the optimal solution to the main problem studied in the paper. We find that the optimal indemnity function involves a deductible provided that the safety loading imposed on the “mean part” of the premium principle is strictly positive. Our main result shows that narrow framing indeed reduces the demand for insurance. The explicit optimal indemnity functions are derived under two special local gain-loss utility functions – the quadratic utility function and the piecewise linear utility function. As a spin-off result, the Bowley solution is also derived for a Stackelberg game between the decision maker and the insurer under the quadratic local gain-loss utility function. Several numerical examples are presented to further analyze the effects of narrow framing on the optimal indemnity function as well as the interests of both parties.</p></div>\",\"PeriodicalId\":54974,\"journal\":{\"name\":\"Insurance Mathematics & Economics\",\"volume\":\"112 \",\"pages\":\"Pages 59-79\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insurance Mathematics & Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167668723000574\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insurance Mathematics & Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167668723000574","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
Optimal insurance design under mean-variance preference with narrow framing
In this paper, we study an optimal insurance design problem under mean-variance criterion by considering the local gain-loss utility of the net payoff of insurance, namely, narrow framing. We extend the existing results in the literature to the case where the decision maker has mean-variance preference with a constraint on the expected utility of the net payoff of insurance, where the premium is determined by the mean-variance premium principle. We first show the existence and uniqueness of the optimal solution to the main problem studied in the paper. We find that the optimal indemnity function involves a deductible provided that the safety loading imposed on the “mean part” of the premium principle is strictly positive. Our main result shows that narrow framing indeed reduces the demand for insurance. The explicit optimal indemnity functions are derived under two special local gain-loss utility functions – the quadratic utility function and the piecewise linear utility function. As a spin-off result, the Bowley solution is also derived for a Stackelberg game between the decision maker and the insurer under the quadratic local gain-loss utility function. Several numerical examples are presented to further analyze the effects of narrow framing on the optimal indemnity function as well as the interests of both parties.
期刊介绍:
Insurance: Mathematics and Economics publishes leading research spanning all fields of actuarial science research. It appears six times per year and is the largest journal in actuarial science research around the world.
Insurance: Mathematics and Economics is an international academic journal that aims to strengthen the communication between individuals and groups who develop and apply research results in actuarial science. The journal feels a particular obligation to facilitate closer cooperation between those who conduct research in insurance mathematics and quantitative insurance economics, and practicing actuaries who are interested in the implementation of the results. To this purpose, Insurance: Mathematics and Economics publishes high-quality articles of broad international interest, concerned with either the theory of insurance mathematics and quantitative insurance economics or the inventive application of it, including empirical or experimental results. Articles that combine several of these aspects are particularly considered.