Simon Scherrer, Seyedali Tabaeiaghdaei, Adrian Perrig
{"title":"互联网服务提供商之间的质量竞争","authors":"Simon Scherrer, Seyedali Tabaeiaghdaei, Adrian Perrig","doi":"10.1016/j.peva.2023.102375","DOIUrl":null,"url":null,"abstract":"<div><p>Internet service providers (ISPs) have a variety of quality attributes that determine their attractiveness for data transmission, ranging from quality-of-service metrics such as jitter to security properties such as the presence of DDoS defense systems. ISPs should optimize these attributes in line with their profit objective, i.e., maximize revenue from attracted traffic while minimizing attribute-related cost, all in the context of alternative offers by competing ISPs. However, this attribute optimization is difficult not least because many aspects of ISP competition are barely understood on a systematic level, e.g., the multi-dimensional and cost-driving nature of path quality, and the distributed decision making of ISPs on the same path.</p><p>In this paper, we improve this understanding by analyzing how ISP competition affects path quality and ISP profits. To that end, we develop a game-theoretic model in which ISPs (i) affect path quality via multiple attributes that entail costs, (ii) are on paths together with other selfish ISPs, and (iii) are in competition with alternative paths when attracting traffic. The model enables an extensive theoretical analysis, surprisingly showing that competition can have both positive and negative effects on path quality and ISP profits, depending on the network topology and the cost structure of ISPs. However, a large-scale simulation, which draws on real-world data to instantiate the model, shows that the positive effects will likely prevail in practice: If the number of selectable paths towards any destination increases from 1 to 5, the prevalence of quality attributes increases by at least 50%, while 75% of ISPs improve their profit.</p></div>","PeriodicalId":19964,"journal":{"name":"Performance Evaluation","volume":"162 ","pages":"Article 102375"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quality competition among internet service providers\",\"authors\":\"Simon Scherrer, Seyedali Tabaeiaghdaei, Adrian Perrig\",\"doi\":\"10.1016/j.peva.2023.102375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Internet service providers (ISPs) have a variety of quality attributes that determine their attractiveness for data transmission, ranging from quality-of-service metrics such as jitter to security properties such as the presence of DDoS defense systems. ISPs should optimize these attributes in line with their profit objective, i.e., maximize revenue from attracted traffic while minimizing attribute-related cost, all in the context of alternative offers by competing ISPs. However, this attribute optimization is difficult not least because many aspects of ISP competition are barely understood on a systematic level, e.g., the multi-dimensional and cost-driving nature of path quality, and the distributed decision making of ISPs on the same path.</p><p>In this paper, we improve this understanding by analyzing how ISP competition affects path quality and ISP profits. To that end, we develop a game-theoretic model in which ISPs (i) affect path quality via multiple attributes that entail costs, (ii) are on paths together with other selfish ISPs, and (iii) are in competition with alternative paths when attracting traffic. The model enables an extensive theoretical analysis, surprisingly showing that competition can have both positive and negative effects on path quality and ISP profits, depending on the network topology and the cost structure of ISPs. However, a large-scale simulation, which draws on real-world data to instantiate the model, shows that the positive effects will likely prevail in practice: If the number of selectable paths towards any destination increases from 1 to 5, the prevalence of quality attributes increases by at least 50%, while 75% of ISPs improve their profit.</p></div>\",\"PeriodicalId\":19964,\"journal\":{\"name\":\"Performance Evaluation\",\"volume\":\"162 \",\"pages\":\"Article 102375\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Performance Evaluation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166531623000457\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance Evaluation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166531623000457","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Quality competition among internet service providers
Internet service providers (ISPs) have a variety of quality attributes that determine their attractiveness for data transmission, ranging from quality-of-service metrics such as jitter to security properties such as the presence of DDoS defense systems. ISPs should optimize these attributes in line with their profit objective, i.e., maximize revenue from attracted traffic while minimizing attribute-related cost, all in the context of alternative offers by competing ISPs. However, this attribute optimization is difficult not least because many aspects of ISP competition are barely understood on a systematic level, e.g., the multi-dimensional and cost-driving nature of path quality, and the distributed decision making of ISPs on the same path.
In this paper, we improve this understanding by analyzing how ISP competition affects path quality and ISP profits. To that end, we develop a game-theoretic model in which ISPs (i) affect path quality via multiple attributes that entail costs, (ii) are on paths together with other selfish ISPs, and (iii) are in competition with alternative paths when attracting traffic. The model enables an extensive theoretical analysis, surprisingly showing that competition can have both positive and negative effects on path quality and ISP profits, depending on the network topology and the cost structure of ISPs. However, a large-scale simulation, which draws on real-world data to instantiate the model, shows that the positive effects will likely prevail in practice: If the number of selectable paths towards any destination increases from 1 to 5, the prevalence of quality attributes increases by at least 50%, while 75% of ISPs improve their profit.
期刊介绍:
Performance Evaluation functions as a leading journal in the area of modeling, measurement, and evaluation of performance aspects of computing and communication systems. As such, it aims to present a balanced and complete view of the entire Performance Evaluation profession. Hence, the journal is interested in papers that focus on one or more of the following dimensions:
-Define new performance evaluation tools, including measurement and monitoring tools as well as modeling and analytic techniques
-Provide new insights into the performance of computing and communication systems
-Introduce new application areas where performance evaluation tools can play an important role and creative new uses for performance evaluation tools.
More specifically, common application areas of interest include the performance of:
-Resource allocation and control methods and algorithms (e.g. routing and flow control in networks, bandwidth allocation, processor scheduling, memory management)
-System architecture, design and implementation
-Cognitive radio
-VANETs
-Social networks and media
-Energy efficient ICT
-Energy harvesting
-Data centers
-Data centric networks
-System reliability
-System tuning and capacity planning
-Wireless and sensor networks
-Autonomic and self-organizing systems
-Embedded systems
-Network science