Laura Bozzelli , Angelo Montanari , Adriano Peron , Pietro Sala
{"title":"子区间和后缀时间逻辑的空间完备性","authors":"Laura Bozzelli , Angelo Montanari , Adriano Peron , Pietro Sala","doi":"10.1016/j.ic.2023.105083","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove <span>Pspace</span>-completeness of the finite satisfiability and model checking problems for the fragment of Halpern and Shoham interval logic with modality <span><math><mrow><mi>〈</mi><mi>E</mi><mi>〉</mi></mrow></math></span>, for the “suffix” relation on pairs of intervals, and modality <span><math><mrow><mi>〈</mi><mi>D</mi><mi>〉</mi></mrow></math></span>, for the “sub-interval” relation, under the homogeneity assumption. The result significantly improves the <span>Expspace</span> upper bound recently established for the same fragment, and proves the rather surprising fact that the complexity of the considered problems does not change when we add either the modality for suffixes (<span><math><mrow><mi>〈</mi><mi>E</mi><mi>〉</mi></mrow></math></span>) or, symmetrically, the modality for prefixes (<span><math><mrow><mi>〈</mi><mi>B</mi><mi>〉</mi></mrow></math></span>) to the logic of sub-intervals (featuring only <span><math><mrow><mi>〈</mi><mi>D</mi><mi>〉</mi></mrow></math></span>).</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"294 ","pages":"Article 105083"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pspace-completeness of the temporal logic of sub-intervals and suffixes\",\"authors\":\"Laura Bozzelli , Angelo Montanari , Adriano Peron , Pietro Sala\",\"doi\":\"10.1016/j.ic.2023.105083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we prove <span>Pspace</span>-completeness of the finite satisfiability and model checking problems for the fragment of Halpern and Shoham interval logic with modality <span><math><mrow><mi>〈</mi><mi>E</mi><mi>〉</mi></mrow></math></span>, for the “suffix” relation on pairs of intervals, and modality <span><math><mrow><mi>〈</mi><mi>D</mi><mi>〉</mi></mrow></math></span>, for the “sub-interval” relation, under the homogeneity assumption. The result significantly improves the <span>Expspace</span> upper bound recently established for the same fragment, and proves the rather surprising fact that the complexity of the considered problems does not change when we add either the modality for suffixes (<span><math><mrow><mi>〈</mi><mi>E</mi><mi>〉</mi></mrow></math></span>) or, symmetrically, the modality for prefixes (<span><math><mrow><mi>〈</mi><mi>B</mi><mi>〉</mi></mrow></math></span>) to the logic of sub-intervals (featuring only <span><math><mrow><mi>〈</mi><mi>D</mi><mi>〉</mi></mrow></math></span>).</p></div>\",\"PeriodicalId\":54985,\"journal\":{\"name\":\"Information and Computation\",\"volume\":\"294 \",\"pages\":\"Article 105083\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089054012300086X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089054012300086X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
在齐性假设下,证明了模态< E >的Halpern和Shoham区间逻辑片段对于区间对上的“suffix”关系和“子区间”关系的模态< D >的有限可满足性的p -完备性和模型检验问题。该结果显著改善了最近为同一片段建立的Expspace上界,并证明了一个相当令人惊讶的事实,即当我们将后缀(< E >)的模态或对称地将前缀(< B >)的模态添加到子区间逻辑(仅以< D >为特征)时,所考虑问题的复杂性不会发生变化。
Pspace-completeness of the temporal logic of sub-intervals and suffixes
In this paper, we prove Pspace-completeness of the finite satisfiability and model checking problems for the fragment of Halpern and Shoham interval logic with modality , for the “suffix” relation on pairs of intervals, and modality , for the “sub-interval” relation, under the homogeneity assumption. The result significantly improves the Expspace upper bound recently established for the same fragment, and proves the rather surprising fact that the complexity of the considered problems does not change when we add either the modality for suffixes () or, symmetrically, the modality for prefixes () to the logic of sub-intervals (featuring only ).
期刊介绍:
Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as
-Biological computation and computational biology-
Computational complexity-
Computer theorem-proving-
Concurrency and distributed process theory-
Cryptographic theory-
Data base theory-
Decision problems in logic-
Design and analysis of algorithms-
Discrete optimization and mathematical programming-
Inductive inference and learning theory-
Logic & constraint programming-
Program verification & model checking-
Probabilistic & Quantum computation-
Semantics of programming languages-
Symbolic computation, lambda calculus, and rewriting systems-
Types and typechecking