扩大点对集原则的范围

IF 0.8 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Jack H. Lutz , Neil Lutz , Elvira Mayordomo
{"title":"扩大点对集原则的范围","authors":"Jack H. Lutz ,&nbsp;Neil Lutz ,&nbsp;Elvira Mayordomo","doi":"10.1016/j.ic.2023.105078","DOIUrl":null,"url":null,"abstract":"<div><p>The <em>point-to-set principle</em> of J. Lutz and N. Lutz (2018) has recently enabled the theory of computing to be used to answer open questions about fractal geometry in Euclidean spaces <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. These are classical questions, meaning that their statements do not involve computation or related aspects of logic.</p><p>In this paper we extend the <em>reach</em> of the point-to-set principle from Euclidean spaces to arbitrary separable metric spaces <em>X</em>. We first extend two algorithmic dimensions—computability-theoretic versions of classical Hausdorff and packing dimensions that assign dimensions <span><math><mi>dim</mi><mo>⁡</mo><mo>(</mo><mi>x</mi><mo>)</mo></math></span> and <span><math><mrow><mi>Dim</mi></mrow><mo>(</mo><mi>x</mi><mo>)</mo></math></span> to <em>individual points</em> <span><math><mi>x</mi><mo>∈</mo><mi>X</mi></math></span>—to arbitrary separable metric spaces and to arbitrary gauge families. Our first two main results then extend the point-to-set principle to arbitrary separable metric spaces and to a large class of gauge families.</p><p>We demonstrate the power of our extended point-to-set principle by using it to prove new theorems about classical fractal dimensions in hyperspaces.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"294 ","pages":"Article 105078"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extending the reach of the point-to-set principle\",\"authors\":\"Jack H. Lutz ,&nbsp;Neil Lutz ,&nbsp;Elvira Mayordomo\",\"doi\":\"10.1016/j.ic.2023.105078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The <em>point-to-set principle</em> of J. Lutz and N. Lutz (2018) has recently enabled the theory of computing to be used to answer open questions about fractal geometry in Euclidean spaces <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. These are classical questions, meaning that their statements do not involve computation or related aspects of logic.</p><p>In this paper we extend the <em>reach</em> of the point-to-set principle from Euclidean spaces to arbitrary separable metric spaces <em>X</em>. We first extend two algorithmic dimensions—computability-theoretic versions of classical Hausdorff and packing dimensions that assign dimensions <span><math><mi>dim</mi><mo>⁡</mo><mo>(</mo><mi>x</mi><mo>)</mo></math></span> and <span><math><mrow><mi>Dim</mi></mrow><mo>(</mo><mi>x</mi><mo>)</mo></math></span> to <em>individual points</em> <span><math><mi>x</mi><mo>∈</mo><mi>X</mi></math></span>—to arbitrary separable metric spaces and to arbitrary gauge families. Our first two main results then extend the point-to-set principle to arbitrary separable metric spaces and to a large class of gauge families.</p><p>We demonstrate the power of our extended point-to-set principle by using it to prove new theorems about classical fractal dimensions in hyperspaces.</p></div>\",\"PeriodicalId\":54985,\"journal\":{\"name\":\"Information and Computation\",\"volume\":\"294 \",\"pages\":\"Article 105078\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890540123000810\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540123000810","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

J.Lutz和N.Lutz(2018)的点对集原理最近使计算理论能够用于回答欧几里得空间Rn中关于分形几何的公开问题。这些都是经典问题,意味着它们的陈述不涉及计算或逻辑的相关方面。在本文中,我们将点集原理的范围从欧几里得空间扩展到任意可分离的度量空间X。我们首先扩展了两个算法维度——经典豪斯多夫的可计算性理论版本和分配维度为dim的包装维度⁡(x) 和Dim(x)到个别点x∈x-到任意可分离度量空间和任意规范族。然后,我们的前两个主要结果将点集原理推广到任意可分离度量空间和一大类规范族。我们证明了我们的扩展点集原理的力量,用它来证明关于超空间中经典分形维数的新定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extending the reach of the point-to-set principle

The point-to-set principle of J. Lutz and N. Lutz (2018) has recently enabled the theory of computing to be used to answer open questions about fractal geometry in Euclidean spaces Rn. These are classical questions, meaning that their statements do not involve computation or related aspects of logic.

In this paper we extend the reach of the point-to-set principle from Euclidean spaces to arbitrary separable metric spaces X. We first extend two algorithmic dimensions—computability-theoretic versions of classical Hausdorff and packing dimensions that assign dimensions dim(x) and Dim(x) to individual points xX—to arbitrary separable metric spaces and to arbitrary gauge families. Our first two main results then extend the point-to-set principle to arbitrary separable metric spaces and to a large class of gauge families.

We demonstrate the power of our extended point-to-set principle by using it to prove new theorems about classical fractal dimensions in hyperspaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information and Computation
Information and Computation 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
119
审稿时长
140 days
期刊介绍: Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as -Biological computation and computational biology- Computational complexity- Computer theorem-proving- Concurrency and distributed process theory- Cryptographic theory- Data base theory- Decision problems in logic- Design and analysis of algorithms- Discrete optimization and mathematical programming- Inductive inference and learning theory- Logic & constraint programming- Program verification & model checking- Probabilistic & Quantum computation- Semantics of programming languages- Symbolic computation, lambda calculus, and rewriting systems- Types and typechecking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信