识别2020年美国选举欺诈和抗议讨论中的跨平台用户关系

Q1 Social Sciences
Isabel Murdock , Kathleen M. Carley , Osman Yağan
{"title":"识别2020年美国选举欺诈和抗议讨论中的跨平台用户关系","authors":"Isabel Murdock ,&nbsp;Kathleen M. Carley ,&nbsp;Osman Yağan","doi":"10.1016/j.osnem.2023.100245","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding how social media users interact with each other and spread information across multiple platforms is critical for developing effective methods for promoting truthful information and disrupting misinformation, as well as accurately simulating multi-platform information diffusion. This work explores five approaches for identifying relationships between users involved in cross-platform information spread. We use a combination of user attributes and URL posting behaviors to find users who appear to purposely spread the same information over multiple platforms or transfer information to new platforms. To evaluate the outlined approaches, we apply them to a dataset of over 24M social media posts from Twitter, Facebook, Reddit, and Instagram relating to the 2020 U.S. presidential election. We then characterize and validate our results using null model analysis and the component structure of the user networks returned by each approach. We subsequently examine the political bias, fact ratings, and performance of the content posted by the identified sets of users. We find that the different approaches yield largely distinct sets of users with different biases and content preferences.</p></div>","PeriodicalId":52228,"journal":{"name":"Online Social Networks and Media","volume":"33 ","pages":"Article 100245"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Identifying cross-platform user relationships in 2020 U.S. election fraud and protest discussions\",\"authors\":\"Isabel Murdock ,&nbsp;Kathleen M. Carley ,&nbsp;Osman Yağan\",\"doi\":\"10.1016/j.osnem.2023.100245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding how social media users interact with each other and spread information across multiple platforms is critical for developing effective methods for promoting truthful information and disrupting misinformation, as well as accurately simulating multi-platform information diffusion. This work explores five approaches for identifying relationships between users involved in cross-platform information spread. We use a combination of user attributes and URL posting behaviors to find users who appear to purposely spread the same information over multiple platforms or transfer information to new platforms. To evaluate the outlined approaches, we apply them to a dataset of over 24M social media posts from Twitter, Facebook, Reddit, and Instagram relating to the 2020 U.S. presidential election. We then characterize and validate our results using null model analysis and the component structure of the user networks returned by each approach. We subsequently examine the political bias, fact ratings, and performance of the content posted by the identified sets of users. We find that the different approaches yield largely distinct sets of users with different biases and content preferences.</p></div>\",\"PeriodicalId\":52228,\"journal\":{\"name\":\"Online Social Networks and Media\",\"volume\":\"33 \",\"pages\":\"Article 100245\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Online Social Networks and Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468696423000046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online Social Networks and Media","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468696423000046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 3

摘要

了解社交媒体用户如何在多个平台上相互互动和传播信息,对于开发有效的方法来宣传真实信息和消除错误信息,以及准确模拟多平台信息传播至关重要。这项工作探索了五种方法来识别参与跨平台信息传播的用户之间的关系。我们使用用户属性和URL发布行为的组合来寻找那些似乎有意在多个平台上传播相同信息或将信息转移到新平台的用户。为了评估概述的方法,我们将其应用于Twitter、Facebook、Reddit和Instagram上与2020年美国总统大选有关的2400多万条社交媒体帖子的数据集。然后,我们使用零模型分析和每种方法返回的用户网络的组件结构来表征和验证我们的结果。随后,我们检查了确定的用户组发布的内容的政治偏见、事实评级和表现。我们发现,不同的方法会产生具有不同偏见和内容偏好的不同用户。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying cross-platform user relationships in 2020 U.S. election fraud and protest discussions

Understanding how social media users interact with each other and spread information across multiple platforms is critical for developing effective methods for promoting truthful information and disrupting misinformation, as well as accurately simulating multi-platform information diffusion. This work explores five approaches for identifying relationships between users involved in cross-platform information spread. We use a combination of user attributes and URL posting behaviors to find users who appear to purposely spread the same information over multiple platforms or transfer information to new platforms. To evaluate the outlined approaches, we apply them to a dataset of over 24M social media posts from Twitter, Facebook, Reddit, and Instagram relating to the 2020 U.S. presidential election. We then characterize and validate our results using null model analysis and the component structure of the user networks returned by each approach. We subsequently examine the political bias, fact ratings, and performance of the content posted by the identified sets of users. We find that the different approaches yield largely distinct sets of users with different biases and content preferences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Online Social Networks and Media
Online Social Networks and Media Social Sciences-Communication
CiteScore
10.60
自引率
0.00%
发文量
32
审稿时长
44 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信