Hoa Thi Pham , Sten Claessens , Michael Kuhn , Joseph Awange
{"title":"基于GNSS/水准数据的越南高/超高全球位势模型性能评价","authors":"Hoa Thi Pham , Sten Claessens , Michael Kuhn , Joseph Awange","doi":"10.1016/j.geog.2023.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>The availability of many high-degree Global Geopotential Models (GGMs), namely EGM2008, EIGEN-6C4, GECO, SGG-UGM-1, SGG-UGM-2, XGM2019e_2159, and GGMPlus, challenges users regarding which model is best for Vietnam. This study, therefore, evaluates their performance by comparing them with GNSS/leveling data over Vietnam. Results show that their absolute and relative performances are largely independent of topographic conditions and geographical location and can be ranked into three classes: (1) XGM2019e_2159 has the highest accuracy, (2) the models EIGEN-6C4, GECO, SGG-UGM-1, SGG-UGM-2, and GGMPlus, have a very similar level of medium accuracy, while (3) EGM2008 is found to be the least accurate. In an absolute sense, the differences between GNSS/leveling and EGM2008-based height anomalies have a standard deviation (STD) of 0.290 ± 0.010 m, whereas, for XGM2019e_2159, this is 0.156 ± 0.006 m. All other models have STDs of (0.18–0.19) ± 0.007 m. Regarding relative performance without fitting, all GGMs have comparable accuracies for baseline length of 5–20 km, while for baselines longer than 20 km, the STD of XGM2019e_2159 is 1.5 ppm–0.5 ppm (approximately 19%–40%) lower compared with EGM2008, and 0.5 ppm–0.25 ppm (approximately 7%–36%) lower compared with EIGEN6C4, GECO, SGG-UGM-1, SGG-UGM-2, and GGMPlus. In addition, the STDs decrease significantly from 20 to 12 ppm in the range of 5–10 km, slightly from 12 to 6 ppm for 10–35 km, very slightly from 6 to 2.5 ppm for 35–200 km, and then remain almost unchanged for longer baselines. After fitting, the relative accuracies of all GGMs are at the same level with negligible STD/RMSE values. Furthermore, only EGM2008 experiences significant regional differences, while other GGMs show more homogeneous spatial variation of absolute accuracy over Vietnam. These findings can contribute to the development of local quasigeoid models in Vietnam and may be helpful with the improvement of GGMs in the future.</p></div>","PeriodicalId":46398,"journal":{"name":"Geodesy and Geodynamics","volume":"14 5","pages":"Pages 500-512"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance evaluation of high/ultra-high-degree global geopotential models over Vietnam using GNSS/leveling data\",\"authors\":\"Hoa Thi Pham , Sten Claessens , Michael Kuhn , Joseph Awange\",\"doi\":\"10.1016/j.geog.2023.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The availability of many high-degree Global Geopotential Models (GGMs), namely EGM2008, EIGEN-6C4, GECO, SGG-UGM-1, SGG-UGM-2, XGM2019e_2159, and GGMPlus, challenges users regarding which model is best for Vietnam. This study, therefore, evaluates their performance by comparing them with GNSS/leveling data over Vietnam. Results show that their absolute and relative performances are largely independent of topographic conditions and geographical location and can be ranked into three classes: (1) XGM2019e_2159 has the highest accuracy, (2) the models EIGEN-6C4, GECO, SGG-UGM-1, SGG-UGM-2, and GGMPlus, have a very similar level of medium accuracy, while (3) EGM2008 is found to be the least accurate. In an absolute sense, the differences between GNSS/leveling and EGM2008-based height anomalies have a standard deviation (STD) of 0.290 ± 0.010 m, whereas, for XGM2019e_2159, this is 0.156 ± 0.006 m. All other models have STDs of (0.18–0.19) ± 0.007 m. Regarding relative performance without fitting, all GGMs have comparable accuracies for baseline length of 5–20 km, while for baselines longer than 20 km, the STD of XGM2019e_2159 is 1.5 ppm–0.5 ppm (approximately 19%–40%) lower compared with EGM2008, and 0.5 ppm–0.25 ppm (approximately 7%–36%) lower compared with EIGEN6C4, GECO, SGG-UGM-1, SGG-UGM-2, and GGMPlus. In addition, the STDs decrease significantly from 20 to 12 ppm in the range of 5–10 km, slightly from 12 to 6 ppm for 10–35 km, very slightly from 6 to 2.5 ppm for 35–200 km, and then remain almost unchanged for longer baselines. After fitting, the relative accuracies of all GGMs are at the same level with negligible STD/RMSE values. Furthermore, only EGM2008 experiences significant regional differences, while other GGMs show more homogeneous spatial variation of absolute accuracy over Vietnam. These findings can contribute to the development of local quasigeoid models in Vietnam and may be helpful with the improvement of GGMs in the future.</p></div>\",\"PeriodicalId\":46398,\"journal\":{\"name\":\"Geodesy and Geodynamics\",\"volume\":\"14 5\",\"pages\":\"Pages 500-512\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geodesy and Geodynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674984723000319\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodesy and Geodynamics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674984723000319","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Performance evaluation of high/ultra-high-degree global geopotential models over Vietnam using GNSS/leveling data
The availability of many high-degree Global Geopotential Models (GGMs), namely EGM2008, EIGEN-6C4, GECO, SGG-UGM-1, SGG-UGM-2, XGM2019e_2159, and GGMPlus, challenges users regarding which model is best for Vietnam. This study, therefore, evaluates their performance by comparing them with GNSS/leveling data over Vietnam. Results show that their absolute and relative performances are largely independent of topographic conditions and geographical location and can be ranked into three classes: (1) XGM2019e_2159 has the highest accuracy, (2) the models EIGEN-6C4, GECO, SGG-UGM-1, SGG-UGM-2, and GGMPlus, have a very similar level of medium accuracy, while (3) EGM2008 is found to be the least accurate. In an absolute sense, the differences between GNSS/leveling and EGM2008-based height anomalies have a standard deviation (STD) of 0.290 ± 0.010 m, whereas, for XGM2019e_2159, this is 0.156 ± 0.006 m. All other models have STDs of (0.18–0.19) ± 0.007 m. Regarding relative performance without fitting, all GGMs have comparable accuracies for baseline length of 5–20 km, while for baselines longer than 20 km, the STD of XGM2019e_2159 is 1.5 ppm–0.5 ppm (approximately 19%–40%) lower compared with EGM2008, and 0.5 ppm–0.25 ppm (approximately 7%–36%) lower compared with EIGEN6C4, GECO, SGG-UGM-1, SGG-UGM-2, and GGMPlus. In addition, the STDs decrease significantly from 20 to 12 ppm in the range of 5–10 km, slightly from 12 to 6 ppm for 10–35 km, very slightly from 6 to 2.5 ppm for 35–200 km, and then remain almost unchanged for longer baselines. After fitting, the relative accuracies of all GGMs are at the same level with negligible STD/RMSE values. Furthermore, only EGM2008 experiences significant regional differences, while other GGMs show more homogeneous spatial variation of absolute accuracy over Vietnam. These findings can contribute to the development of local quasigeoid models in Vietnam and may be helpful with the improvement of GGMs in the future.
期刊介绍:
Geodesy and Geodynamics launched in October, 2010, and is a bimonthly publication. It is sponsored jointly by Institute of Seismology, China Earthquake Administration, Science Press, and another six agencies. It is an international journal with a Chinese heart. Geodesy and Geodynamics is committed to the publication of quality scientific papers in English in the fields of geodesy and geodynamics from authors around the world. Its aim is to promote a combination between Geodesy and Geodynamics, deepen the application of Geodesy in the field of Geoscience and quicken worldwide fellows'' understanding on scientific research activity in China. It mainly publishes newest research achievements in the field of Geodesy, Geodynamics, Science of Disaster and so on. Aims and Scope: new theories and methods of geodesy; new results of monitoring and studying crustal movement and deformation by using geodetic theories and methods; new ways and achievements in earthquake-prediction investigation by using geodetic theories and methods; new results of crustal movement and deformation studies by using other geologic, hydrological, and geophysical theories and methods; new results of satellite gravity measurements; new development and results of space-to-ground observation technology.