非线性方程的Steffensen型最优八阶多重寻根格式

Fiza Zafar , Sofia Iqbal , Tahira Nawaz
{"title":"非线性方程的Steffensen型最优八阶多重寻根格式","authors":"Fiza Zafar ,&nbsp;Sofia Iqbal ,&nbsp;Tahira Nawaz","doi":"10.1016/j.jcmds.2023.100079","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we introduce a novel weight function-based eighth order derivative-free method for locating repeated roots of nonlinear equations. It is a three-step Steffensen-type scheme with first order divided differences in place of the first order derivatives. It is noteworthy that so far only few eighth order derivative free multiple root finding scheme exist in literature. Different nonlinear standard and applications based nonlinear functions are used to demonstrate the applicability of the suggested approach and to confirm its strong convergence tendency. Drawing basins of attraction on the graphical regions demonstrates how the offered family of approaches converge.</p></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"7 ","pages":"Article 100079"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Steffensen type optimal eighth order multiple root finding scheme for nonlinear equations\",\"authors\":\"Fiza Zafar ,&nbsp;Sofia Iqbal ,&nbsp;Tahira Nawaz\",\"doi\":\"10.1016/j.jcmds.2023.100079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we introduce a novel weight function-based eighth order derivative-free method for locating repeated roots of nonlinear equations. It is a three-step Steffensen-type scheme with first order divided differences in place of the first order derivatives. It is noteworthy that so far only few eighth order derivative free multiple root finding scheme exist in literature. Different nonlinear standard and applications based nonlinear functions are used to demonstrate the applicability of the suggested approach and to confirm its strong convergence tendency. Drawing basins of attraction on the graphical regions demonstrates how the offered family of approaches converge.</p></div>\",\"PeriodicalId\":100768,\"journal\":{\"name\":\"Journal of Computational Mathematics and Data Science\",\"volume\":\"7 \",\"pages\":\"Article 100079\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Mathematics and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772415823000068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415823000068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本研究中,我们引入了一种新的基于权函数的无八阶导数的非线性方程重根定位方法。它是一个用一阶微分代替一阶微分的三步steffensen型格式。值得注意的是,目前文献中只有很少的八阶导数自由重根查找格式。通过不同的非线性标准和基于非线性函数的应用,证明了该方法的适用性,并证实了该方法的强收敛性。在图形区域上绘制吸引力盆地说明了所提供的一系列方法如何收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Steffensen type optimal eighth order multiple root finding scheme for nonlinear equations

In this study, we introduce a novel weight function-based eighth order derivative-free method for locating repeated roots of nonlinear equations. It is a three-step Steffensen-type scheme with first order divided differences in place of the first order derivatives. It is noteworthy that so far only few eighth order derivative free multiple root finding scheme exist in literature. Different nonlinear standard and applications based nonlinear functions are used to demonstrate the applicability of the suggested approach and to confirm its strong convergence tendency. Drawing basins of attraction on the graphical regions demonstrates how the offered family of approaches converge.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信