LFR-Net:用于单幅图像去雾的局部特征残差网络

IF 2.3 Q2 COMPUTER SCIENCE, THEORY & METHODS
Array Pub Date : 2023-03-01 DOI:10.1016/j.array.2023.100278
Xinjie Xiao, Zhiwei Li, Wenle Ning, Nannan Zhang, Xudong Teng
{"title":"LFR-Net:用于单幅图像去雾的局部特征残差网络","authors":"Xinjie Xiao,&nbsp;Zhiwei Li,&nbsp;Wenle Ning,&nbsp;Nannan Zhang,&nbsp;Xudong Teng","doi":"10.1016/j.array.2023.100278","DOIUrl":null,"url":null,"abstract":"<div><p>Previous learning-based methods only employ clear images to train the dehazing network, but some useful information such as hazy images, media transmission maps and atmospheric light values in datasets were ignored. Here, we propose a local feature residual network (LFR-Net) for single image dehazing, which is aimed at improving the quality of dehazed images by fully utilizing the information in the training dataset. The backbone of LFR-Net is structured by feature residual block and adaptive feature fusion model. Furthermore, to preserve more details for the recovered clear images, we design an adaptive feature fusion model that adaptively fuses shallow and deep features at each scale of the encoder and decoder. Extended experiments show that the performance of our LFR-Net outperforms the state-of-the-art methods.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LFR-Net: Local feature residual network for single image dehazing\",\"authors\":\"Xinjie Xiao,&nbsp;Zhiwei Li,&nbsp;Wenle Ning,&nbsp;Nannan Zhang,&nbsp;Xudong Teng\",\"doi\":\"10.1016/j.array.2023.100278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Previous learning-based methods only employ clear images to train the dehazing network, but some useful information such as hazy images, media transmission maps and atmospheric light values in datasets were ignored. Here, we propose a local feature residual network (LFR-Net) for single image dehazing, which is aimed at improving the quality of dehazed images by fully utilizing the information in the training dataset. The backbone of LFR-Net is structured by feature residual block and adaptive feature fusion model. Furthermore, to preserve more details for the recovered clear images, we design an adaptive feature fusion model that adaptively fuses shallow and deep features at each scale of the encoder and decoder. Extended experiments show that the performance of our LFR-Net outperforms the state-of-the-art methods.</p></div>\",\"PeriodicalId\":8417,\"journal\":{\"name\":\"Array\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Array\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590005623000036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005623000036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

以往的基于学习的方法只使用清晰的图像来训练去雾网络,而忽略了数据集中一些有用的信息,如雾图像、媒体传输图和大气光值。本文提出了一种用于单幅图像去雾的局部特征残差网络(LFR-Net),旨在通过充分利用训练数据集中的信息来提高去雾图像的质量。LFR-Net的主干由特征残差块和自适应特征融合模型构成。此外,为了在恢复的清晰图像中保留更多的细节,我们设计了一种自适应特征融合模型,在编码器和解码器的每个尺度上自适应融合浅特征和深特征。扩展实验表明,我们的LFR-Net的性能优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LFR-Net: Local feature residual network for single image dehazing

Previous learning-based methods only employ clear images to train the dehazing network, but some useful information such as hazy images, media transmission maps and atmospheric light values in datasets were ignored. Here, we propose a local feature residual network (LFR-Net) for single image dehazing, which is aimed at improving the quality of dehazed images by fully utilizing the information in the training dataset. The backbone of LFR-Net is structured by feature residual block and adaptive feature fusion model. Furthermore, to preserve more details for the recovered clear images, we design an adaptive feature fusion model that adaptively fuses shallow and deep features at each scale of the encoder and decoder. Extended experiments show that the performance of our LFR-Net outperforms the state-of-the-art methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信