Jing Wang , Qiang Jian , Kun Yan , Jiao Yang , Liping Yan , Wei Cheng
{"title":"m6a修饰的miR-143-3p通过靶向Smad3抑制支气管上皮细胞的上皮间质转化和肺成纤维细胞的细胞外基质生成","authors":"Jing Wang , Qiang Jian , Kun Yan , Jiao Yang , Liping Yan , Wei Cheng","doi":"10.1016/j.pupt.2023.102251","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p><span><span>Airway epithelial cells epithelial mesenchymal transition (EMT) and </span>lung fibroblasts </span>extracellular matrix<span><span> (ECM) production are the key steps in airway remodeling. Our previous study demonstrated that miR-143-3p has the ability to impede airway smooth muscle </span>cell proliferation and ECM deposition. However, the function of miR-143-3p in airway epithelial cells and lung fibroblasts remains unclear.</span></p></div><div><h3>Methods</h3><p><span><span>Cell viability was determined using MTT method, while cell migration was evaluated through scratch assay. EMT and </span>ECM proteins<span> were detected by western blot<span>, RT-qPCR, and ELISA. To determine the level of miR-143-3p m</span></span></span><sup>6</sup><span><span>A methylation, we employed the meRIP-qPCR assay. Additionally, the binding of miR-143-3p with Smad3 were projected by bioinformatics and validated by dual </span>luciferase reporter assays.</span></p></div><div><h3>Results</h3><p>It was discovered that the expression of miR-143-3p were lower in both asthma patients and TGF-β1-treated human bronchial epithelial 16HBE cells and human lung fibroblast HPF cells. Upregulation of miR-143-3p restrained 16HBE cell migration, and decreased EMT mesenchymal markers and increased epithelial markers. And upregulation of miR-143-3p impaired cell viability and ECM protein production in HPF cells. Mechanistically, interfering with METTL3 resulted in decreased m<sup>6</sup>A modification of miR-143-3p and led to lower levels of miR-143-3p. Moreover, miR-143-3p were verified to directly target and downregulate Smad3. Upregulation of Smad3 attenuated the effects of miR-143-3p on cell EMT and ECM production.</p></div><div><h3>Conclusion</h3><p>MiR-143-3p inhibits airway epithelial cell EMT as well as lung fibroblast ECM production by downregulating Smad3. Therefore, miR-143-3p may be a promising target to reduce airway remodeling in asthma.</p></div>","PeriodicalId":20799,"journal":{"name":"Pulmonary pharmacology & therapeutics","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"m6A-modified miR-143-3p inhibits epithelial mesenchymal transition in bronchial epithelial cells and extracellular matrix production in lung fibroblasts by targeting Smad3\",\"authors\":\"Jing Wang , Qiang Jian , Kun Yan , Jiao Yang , Liping Yan , Wei Cheng\",\"doi\":\"10.1016/j.pupt.2023.102251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p><span><span>Airway epithelial cells epithelial mesenchymal transition (EMT) and </span>lung fibroblasts </span>extracellular matrix<span><span> (ECM) production are the key steps in airway remodeling. Our previous study demonstrated that miR-143-3p has the ability to impede airway smooth muscle </span>cell proliferation and ECM deposition. However, the function of miR-143-3p in airway epithelial cells and lung fibroblasts remains unclear.</span></p></div><div><h3>Methods</h3><p><span><span>Cell viability was determined using MTT method, while cell migration was evaluated through scratch assay. EMT and </span>ECM proteins<span> were detected by western blot<span>, RT-qPCR, and ELISA. To determine the level of miR-143-3p m</span></span></span><sup>6</sup><span><span>A methylation, we employed the meRIP-qPCR assay. Additionally, the binding of miR-143-3p with Smad3 were projected by bioinformatics and validated by dual </span>luciferase reporter assays.</span></p></div><div><h3>Results</h3><p>It was discovered that the expression of miR-143-3p were lower in both asthma patients and TGF-β1-treated human bronchial epithelial 16HBE cells and human lung fibroblast HPF cells. Upregulation of miR-143-3p restrained 16HBE cell migration, and decreased EMT mesenchymal markers and increased epithelial markers. And upregulation of miR-143-3p impaired cell viability and ECM protein production in HPF cells. Mechanistically, interfering with METTL3 resulted in decreased m<sup>6</sup>A modification of miR-143-3p and led to lower levels of miR-143-3p. Moreover, miR-143-3p were verified to directly target and downregulate Smad3. Upregulation of Smad3 attenuated the effects of miR-143-3p on cell EMT and ECM production.</p></div><div><h3>Conclusion</h3><p>MiR-143-3p inhibits airway epithelial cell EMT as well as lung fibroblast ECM production by downregulating Smad3. Therefore, miR-143-3p may be a promising target to reduce airway remodeling in asthma.</p></div>\",\"PeriodicalId\":20799,\"journal\":{\"name\":\"Pulmonary pharmacology & therapeutics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pulmonary pharmacology & therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1094553923000639\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pulmonary pharmacology & therapeutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1094553923000639","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
m6A-modified miR-143-3p inhibits epithelial mesenchymal transition in bronchial epithelial cells and extracellular matrix production in lung fibroblasts by targeting Smad3
Background
Airway epithelial cells epithelial mesenchymal transition (EMT) and lung fibroblasts extracellular matrix (ECM) production are the key steps in airway remodeling. Our previous study demonstrated that miR-143-3p has the ability to impede airway smooth muscle cell proliferation and ECM deposition. However, the function of miR-143-3p in airway epithelial cells and lung fibroblasts remains unclear.
Methods
Cell viability was determined using MTT method, while cell migration was evaluated through scratch assay. EMT and ECM proteins were detected by western blot, RT-qPCR, and ELISA. To determine the level of miR-143-3p m6A methylation, we employed the meRIP-qPCR assay. Additionally, the binding of miR-143-3p with Smad3 were projected by bioinformatics and validated by dual luciferase reporter assays.
Results
It was discovered that the expression of miR-143-3p were lower in both asthma patients and TGF-β1-treated human bronchial epithelial 16HBE cells and human lung fibroblast HPF cells. Upregulation of miR-143-3p restrained 16HBE cell migration, and decreased EMT mesenchymal markers and increased epithelial markers. And upregulation of miR-143-3p impaired cell viability and ECM protein production in HPF cells. Mechanistically, interfering with METTL3 resulted in decreased m6A modification of miR-143-3p and led to lower levels of miR-143-3p. Moreover, miR-143-3p were verified to directly target and downregulate Smad3. Upregulation of Smad3 attenuated the effects of miR-143-3p on cell EMT and ECM production.
Conclusion
MiR-143-3p inhibits airway epithelial cell EMT as well as lung fibroblast ECM production by downregulating Smad3. Therefore, miR-143-3p may be a promising target to reduce airway remodeling in asthma.
期刊介绍:
Pulmonary Pharmacology and Therapeutics (formerly Pulmonary Pharmacology) is concerned with lung pharmacology from molecular to clinical aspects. The subject matter encompasses the major diseases of the lung including asthma, cystic fibrosis, pulmonary circulation, ARDS, carcinoma, bronchitis, emphysema and drug delivery. Laboratory and clinical research on man and animals will be considered including studies related to chemotherapy of cancer, tuberculosis and infection. In addition to original research papers the journal will include review articles and book reviews.
Research Areas Include:
• All major diseases of the lung
• Physiology
• Pathology
• Drug delivery
• Metabolism
• Pulmonary Toxicology.