Aluisio A. Cabral , Jose M. Rivas-Mercury , Jose R.M. Sucupira , Miguel A. Rodríguez , Antonio H. De Aza , Pilar Pena , Elena Moukhina
{"title":"研磨条件对三水铝石分解动力学的影响","authors":"Aluisio A. Cabral , Jose M. Rivas-Mercury , Jose R.M. Sucupira , Miguel A. Rodríguez , Antonio H. De Aza , Pilar Pena , Elena Moukhina","doi":"10.1016/j.bsecv.2023.02.003","DOIUrl":null,"url":null,"abstract":"<div><p>Synthetic gibbsite (Al(OH)<sub>3</sub>) was mechanically activated by attrition milling for 24<!--> <!-->h, with various grinding ball-to-powder weight ratios (0, 5, 10, and 20), and characterized by thermal analysis (TG-DSC). Further, we determined the corresponding kinetic parameters using the model-free and model-fitting methods from the Thermogravimetric Analysis (TG) data set. We found that the activation energies provided by both models agree very well. At temperatures higher than 350<!--> <!-->°C, the milled samples (GB5, GB10, and GB20) lose mass very slowly, while the unmilled sample (GB0) decomposes faster. In addition, we demonstrated that the decomposition mechanism of each sample engages multi-step reactions, and the corresponding activation energies change with the increasing milling conditions.</p></div>","PeriodicalId":56330,"journal":{"name":"Boletin de la Sociedad Espanola de Ceramica y Vidrio","volume":"62 3","pages":"Pages 292-301"},"PeriodicalIF":2.7000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of the milling conditions on the decomposition kinetics of gibbsite\",\"authors\":\"Aluisio A. Cabral , Jose M. Rivas-Mercury , Jose R.M. Sucupira , Miguel A. Rodríguez , Antonio H. De Aza , Pilar Pena , Elena Moukhina\",\"doi\":\"10.1016/j.bsecv.2023.02.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Synthetic gibbsite (Al(OH)<sub>3</sub>) was mechanically activated by attrition milling for 24<!--> <!-->h, with various grinding ball-to-powder weight ratios (0, 5, 10, and 20), and characterized by thermal analysis (TG-DSC). Further, we determined the corresponding kinetic parameters using the model-free and model-fitting methods from the Thermogravimetric Analysis (TG) data set. We found that the activation energies provided by both models agree very well. At temperatures higher than 350<!--> <!-->°C, the milled samples (GB5, GB10, and GB20) lose mass very slowly, while the unmilled sample (GB0) decomposes faster. In addition, we demonstrated that the decomposition mechanism of each sample engages multi-step reactions, and the corresponding activation energies change with the increasing milling conditions.</p></div>\",\"PeriodicalId\":56330,\"journal\":{\"name\":\"Boletin de la Sociedad Espanola de Ceramica y Vidrio\",\"volume\":\"62 3\",\"pages\":\"Pages 292-301\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletin de la Sociedad Espanola de Ceramica y Vidrio\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0366317523000146\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletin de la Sociedad Espanola de Ceramica y Vidrio","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0366317523000146","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Effect of the milling conditions on the decomposition kinetics of gibbsite
Synthetic gibbsite (Al(OH)3) was mechanically activated by attrition milling for 24 h, with various grinding ball-to-powder weight ratios (0, 5, 10, and 20), and characterized by thermal analysis (TG-DSC). Further, we determined the corresponding kinetic parameters using the model-free and model-fitting methods from the Thermogravimetric Analysis (TG) data set. We found that the activation energies provided by both models agree very well. At temperatures higher than 350 °C, the milled samples (GB5, GB10, and GB20) lose mass very slowly, while the unmilled sample (GB0) decomposes faster. In addition, we demonstrated that the decomposition mechanism of each sample engages multi-step reactions, and the corresponding activation energies change with the increasing milling conditions.
期刊介绍:
The Journal of the Spanish Ceramic and Glass Society publishes scientific articles and communications describing original research and reviews relating to ceramic materials and glasses. The main interests are on novel generic science and technology establishing the relationships between synthesis, processing microstructure and properties of materials. Papers may deal with ceramics and glasses included in any of the conventional categories: structural, functional, traditional, composites and cultural heritage. The main objective of the Journal of the Spanish Ceramic and Glass Society is to sustain a high standard research quality by means of appropriate reviewing procedures.