扩充图形以最小化半径

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Joachim Gudmundsson , Yuan Sha
{"title":"扩充图形以最小化半径","authors":"Joachim Gudmundsson ,&nbsp;Yuan Sha","doi":"10.1016/j.comgeo.2023.101996","DOIUrl":null,"url":null,"abstract":"<div><p>We study the problem of augmenting a metric graph by adding <em>k</em> edges while minimizing the radius of the augmented graph. We give a simple 3-approximation algorithm and show that there is no polynomial-time <span><math><mo>(</mo><mn>5</mn><mo>/</mo><mn>3</mn><mo>−</mo><mi>ϵ</mi><mo>)</mo></math></span>-approximation algorithm, for any <span><math><mi>ϵ</mi><mo>&gt;</mo><mn>0</mn></math></span>, unless <span><math><mi>P</mi><mo>=</mo><mi>N</mi><mi>P</mi></math></span>.</p><p>We also give two exact algorithms for the special case when the input graph is a tree, one of which is generalized to handle metric graphs with bounded treewidth.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Augmenting graphs to minimize the radius\",\"authors\":\"Joachim Gudmundsson ,&nbsp;Yuan Sha\",\"doi\":\"10.1016/j.comgeo.2023.101996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the problem of augmenting a metric graph by adding <em>k</em> edges while minimizing the radius of the augmented graph. We give a simple 3-approximation algorithm and show that there is no polynomial-time <span><math><mo>(</mo><mn>5</mn><mo>/</mo><mn>3</mn><mo>−</mo><mi>ϵ</mi><mo>)</mo></math></span>-approximation algorithm, for any <span><math><mi>ϵ</mi><mo>&gt;</mo><mn>0</mn></math></span>, unless <span><math><mi>P</mi><mo>=</mo><mi>N</mi><mi>P</mi></math></span>.</p><p>We also give two exact algorithms for the special case when the input graph is a tree, one of which is generalized to handle metric graphs with bounded treewidth.</p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772123000160\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772123000160","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了通过增加k条边来扩充度量图的问题,同时最小化扩充图的半径。我们给出了一个简单的3-近似算法,并证明对于任何一个ε>;0,除非P=NP。对于输入图为树的特殊情况,我们还给出了两个精确的算法,其中一个算法被推广到处理具有有界树宽的度量图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Augmenting graphs to minimize the radius

We study the problem of augmenting a metric graph by adding k edges while minimizing the radius of the augmented graph. We give a simple 3-approximation algorithm and show that there is no polynomial-time (5/3ϵ)-approximation algorithm, for any ϵ>0, unless P=NP.

We also give two exact algorithms for the special case when the input graph is a tree, one of which is generalized to handle metric graphs with bounded treewidth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信