{"title":"基于随机分水岭变换的足球标线分割与分类","authors":"Daniel Berjón, Carlos Cuevas, Narciso García","doi":"10.1016/j.image.2023.117014","DOIUrl":null,"url":null,"abstract":"<div><p>Augmented reality applications are beginning to change the way sports are broadcast, providing richer experiences and valuable insights to fans. The first step of augmented reality systems is camera calibration, possibly based on detecting the line markings of the playing field. Most existing proposals for line detection rely on edge detection and Hough transform, but radial distortion and extraneous edges cause inaccurate or spurious detections of line markings. We propose a novel strategy to automatically and accurately segment and classify line markings. First, line points are segmented thanks to a stochastic watershed transform that is robust to radial distortions, since it makes no assumptions about line straightness, and is unaffected by the presence of players or the ball. The line points are then linked to primitive structures (straight lines and ellipses) thanks to a very efficient procedure that makes no assumptions about the number of primitives that appear in each image. The strategy has been tested on a new and public database composed by 60 annotated images from matches in five stadiums. The results obtained have proven that the proposed strategy is more robust and accurate than existing approaches, achieving successful line mark detection even under challenging conditions.</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"118 ","pages":"Article 117014"},"PeriodicalIF":3.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soccer line mark segmentation and classification with stochastic watershed transform\",\"authors\":\"Daniel Berjón, Carlos Cuevas, Narciso García\",\"doi\":\"10.1016/j.image.2023.117014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Augmented reality applications are beginning to change the way sports are broadcast, providing richer experiences and valuable insights to fans. The first step of augmented reality systems is camera calibration, possibly based on detecting the line markings of the playing field. Most existing proposals for line detection rely on edge detection and Hough transform, but radial distortion and extraneous edges cause inaccurate or spurious detections of line markings. We propose a novel strategy to automatically and accurately segment and classify line markings. First, line points are segmented thanks to a stochastic watershed transform that is robust to radial distortions, since it makes no assumptions about line straightness, and is unaffected by the presence of players or the ball. The line points are then linked to primitive structures (straight lines and ellipses) thanks to a very efficient procedure that makes no assumptions about the number of primitives that appear in each image. The strategy has been tested on a new and public database composed by 60 annotated images from matches in five stadiums. The results obtained have proven that the proposed strategy is more robust and accurate than existing approaches, achieving successful line mark detection even under challenging conditions.</p></div>\",\"PeriodicalId\":49521,\"journal\":{\"name\":\"Signal Processing-Image Communication\",\"volume\":\"118 \",\"pages\":\"Article 117014\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing-Image Communication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923596523000966\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596523000966","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Soccer line mark segmentation and classification with stochastic watershed transform
Augmented reality applications are beginning to change the way sports are broadcast, providing richer experiences and valuable insights to fans. The first step of augmented reality systems is camera calibration, possibly based on detecting the line markings of the playing field. Most existing proposals for line detection rely on edge detection and Hough transform, but radial distortion and extraneous edges cause inaccurate or spurious detections of line markings. We propose a novel strategy to automatically and accurately segment and classify line markings. First, line points are segmented thanks to a stochastic watershed transform that is robust to radial distortions, since it makes no assumptions about line straightness, and is unaffected by the presence of players or the ball. The line points are then linked to primitive structures (straight lines and ellipses) thanks to a very efficient procedure that makes no assumptions about the number of primitives that appear in each image. The strategy has been tested on a new and public database composed by 60 annotated images from matches in five stadiums. The results obtained have proven that the proposed strategy is more robust and accurate than existing approaches, achieving successful line mark detection even under challenging conditions.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.