Xiaofeng Wang , Jun Yu , Zhiheng Sun , Jiameng Sun , Yingying Su
{"title":"用于全局立体匹配的多尺度图神经网络","authors":"Xiaofeng Wang , Jun Yu , Zhiheng Sun , Jiameng Sun , Yingying Su","doi":"10.1016/j.image.2023.117026","DOIUrl":null,"url":null,"abstract":"<div><p>Currently, deep learning-based stereo matching<span><span> is solely based on local convolution networks, which lack enough global information for accurate disparity estimation. Motivated by the excellent global representation of the graph, a novel Multi-scale </span>Graph Neural Network<span><span> (MGNN) is proposed to essentially improve stereo matching from the global aspect. Firstly, we construct the multi-scale graph structure, where the multi-scale nodes with projected multi-scale image features<span> can be directly linked by the inner-scale and cross-scale edges, instead of solely relying on local convolutions for deep learning-based stereo matching. To enhance the spatial position information at non-Euclidean multi-scale graph space, we further propose a multi-scale </span></span>position embedding to embed the potential position features of Euclidean space into projected multi-scale image features. Secondly, we propose the multi-scale graph feature inference to extract global context information on multi-scale graph structure. Thus, the features not only be globally inferred on each scale, but also can be interactively inferred across different scales to comprehensively consider global context information with multi-scale receptive fields. Finally, MGNN is deployed into dense stereo matching and experiments demonstrate that our method achieves state-of-the-art performance on Scene Flow, KITTI 2012/2015, and Middlebury Stereo Evaluation v.3/2021.</span></span></p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"118 ","pages":"Article 117026"},"PeriodicalIF":3.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-scale graph neural network for global stereo matching\",\"authors\":\"Xiaofeng Wang , Jun Yu , Zhiheng Sun , Jiameng Sun , Yingying Su\",\"doi\":\"10.1016/j.image.2023.117026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Currently, deep learning-based stereo matching<span><span> is solely based on local convolution networks, which lack enough global information for accurate disparity estimation. Motivated by the excellent global representation of the graph, a novel Multi-scale </span>Graph Neural Network<span><span> (MGNN) is proposed to essentially improve stereo matching from the global aspect. Firstly, we construct the multi-scale graph structure, where the multi-scale nodes with projected multi-scale image features<span> can be directly linked by the inner-scale and cross-scale edges, instead of solely relying on local convolutions for deep learning-based stereo matching. To enhance the spatial position information at non-Euclidean multi-scale graph space, we further propose a multi-scale </span></span>position embedding to embed the potential position features of Euclidean space into projected multi-scale image features. Secondly, we propose the multi-scale graph feature inference to extract global context information on multi-scale graph structure. Thus, the features not only be globally inferred on each scale, but also can be interactively inferred across different scales to comprehensively consider global context information with multi-scale receptive fields. Finally, MGNN is deployed into dense stereo matching and experiments demonstrate that our method achieves state-of-the-art performance on Scene Flow, KITTI 2012/2015, and Middlebury Stereo Evaluation v.3/2021.</span></span></p></div>\",\"PeriodicalId\":49521,\"journal\":{\"name\":\"Signal Processing-Image Communication\",\"volume\":\"118 \",\"pages\":\"Article 117026\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing-Image Communication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092359652300108X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092359652300108X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Multi-scale graph neural network for global stereo matching
Currently, deep learning-based stereo matching is solely based on local convolution networks, which lack enough global information for accurate disparity estimation. Motivated by the excellent global representation of the graph, a novel Multi-scale Graph Neural Network (MGNN) is proposed to essentially improve stereo matching from the global aspect. Firstly, we construct the multi-scale graph structure, where the multi-scale nodes with projected multi-scale image features can be directly linked by the inner-scale and cross-scale edges, instead of solely relying on local convolutions for deep learning-based stereo matching. To enhance the spatial position information at non-Euclidean multi-scale graph space, we further propose a multi-scale position embedding to embed the potential position features of Euclidean space into projected multi-scale image features. Secondly, we propose the multi-scale graph feature inference to extract global context information on multi-scale graph structure. Thus, the features not only be globally inferred on each scale, but also can be interactively inferred across different scales to comprehensively consider global context information with multi-scale receptive fields. Finally, MGNN is deployed into dense stereo matching and experiments demonstrate that our method achieves state-of-the-art performance on Scene Flow, KITTI 2012/2015, and Middlebury Stereo Evaluation v.3/2021.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.