{"title":"用于RGB-D显著目标检测的双注意力引导多尺度融合网络","authors":"Huan Gao, Jichang Guo, Yudong Wang, Jianan Dong","doi":"10.1016/j.image.2023.117004","DOIUrl":null,"url":null,"abstract":"<div><p>While recent research on salient object detection (SOD) has shown remarkable progress in leveraging both RGB and depth data, it is still worth exploring how to use the inherent relationship between the two to extract and fuse features more effectively, and further make more accurate predictions. In this paper, we consider combining the attention mechanism with the characteristics of the SOD, proposing the Dual Attention Guided Multi-scale Fusion Network. We design the multi-scale fusion block by combining multi-scale branches with channel attention to achieve better fusion of RGB and depth information. Using the characteristic of the SOD, the dual attention module is proposed to make the network pay more attention to the currently unpredicted saliency regions and the wrong parts in the already predicted regions. We perform an ablation study to verify the effectiveness of each component. Quantitative and qualitative experimental results demonstrate that our method achieves state-of-the-art (SOTA) performance.</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"118 ","pages":"Article 117004"},"PeriodicalIF":3.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual attention guided multi-scale fusion network for RGB-D salient object detection\",\"authors\":\"Huan Gao, Jichang Guo, Yudong Wang, Jianan Dong\",\"doi\":\"10.1016/j.image.2023.117004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>While recent research on salient object detection (SOD) has shown remarkable progress in leveraging both RGB and depth data, it is still worth exploring how to use the inherent relationship between the two to extract and fuse features more effectively, and further make more accurate predictions. In this paper, we consider combining the attention mechanism with the characteristics of the SOD, proposing the Dual Attention Guided Multi-scale Fusion Network. We design the multi-scale fusion block by combining multi-scale branches with channel attention to achieve better fusion of RGB and depth information. Using the characteristic of the SOD, the dual attention module is proposed to make the network pay more attention to the currently unpredicted saliency regions and the wrong parts in the already predicted regions. We perform an ablation study to verify the effectiveness of each component. Quantitative and qualitative experimental results demonstrate that our method achieves state-of-the-art (SOTA) performance.</p></div>\",\"PeriodicalId\":49521,\"journal\":{\"name\":\"Signal Processing-Image Communication\",\"volume\":\"118 \",\"pages\":\"Article 117004\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing-Image Communication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923596523000863\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596523000863","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
While recent research on salient object detection (SOD) has shown remarkable progress in leveraging both RGB and depth data, it is still worth exploring how to use the inherent relationship between the two to extract and fuse features more effectively, and further make more accurate predictions. In this paper, we consider combining the attention mechanism with the characteristics of the SOD, proposing the Dual Attention Guided Multi-scale Fusion Network. We design the multi-scale fusion block by combining multi-scale branches with channel attention to achieve better fusion of RGB and depth information. Using the characteristic of the SOD, the dual attention module is proposed to make the network pay more attention to the currently unpredicted saliency regions and the wrong parts in the already predicted regions. We perform an ablation study to verify the effectiveness of each component. Quantitative and qualitative experimental results demonstrate that our method achieves state-of-the-art (SOTA) performance.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.