通过数据驱动的政策学习框架实现重症监护患者的最佳出院

IF 1.5 Q3 HEALTH CARE SCIENCES & SERVICES
Fernando Lejarza , Jacob Calvert , Misty M. Attwood , Daniel Evans , Qingqing Mao
{"title":"通过数据驱动的政策学习框架实现重症监护患者的最佳出院","authors":"Fernando Lejarza ,&nbsp;Jacob Calvert ,&nbsp;Misty M. Attwood ,&nbsp;Daniel Evans ,&nbsp;Qingqing Mao","doi":"10.1016/j.orhc.2023.100400","DOIUrl":null,"url":null,"abstract":"<div><p>Clinical decision support tools rooted in machine learning and optimization can provide significant value to healthcare providers through better management of intensive care units<span>. In particular, it is important that intensive care unit patient discharge decisions account for the nuanced trade-off between decreasing the length of stay and the risk of readmission or death after discharge<span> of a patient. This work introduces a comprehensive framework (i.e., not geared towards any particular disease or condition) for capturing this trade-off and to recommend optimal discharge timing decisions given the electronic health records of a patient. A data-driven approach is used to derive a parsimonious, discrete state space representation to represent the physiological condition of a given patient. Based on this model and a given cost function, an infinite-horizon discounted Markov decision process is formulated and solved numerically to compute an optimal discharge policy, whose performance is assessed using off-policy evaluation strategies. Extensive numerical experiments are performed to validate the proposed framework using real-life intensive care unit patient data.</span></span></p></div>","PeriodicalId":46320,"journal":{"name":"Operations Research for Health Care","volume":"38 ","pages":"Article 100400"},"PeriodicalIF":1.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal discharge of patients from intensive care via a data-driven policy learning framework\",\"authors\":\"Fernando Lejarza ,&nbsp;Jacob Calvert ,&nbsp;Misty M. Attwood ,&nbsp;Daniel Evans ,&nbsp;Qingqing Mao\",\"doi\":\"10.1016/j.orhc.2023.100400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Clinical decision support tools rooted in machine learning and optimization can provide significant value to healthcare providers through better management of intensive care units<span>. In particular, it is important that intensive care unit patient discharge decisions account for the nuanced trade-off between decreasing the length of stay and the risk of readmission or death after discharge<span> of a patient. This work introduces a comprehensive framework (i.e., not geared towards any particular disease or condition) for capturing this trade-off and to recommend optimal discharge timing decisions given the electronic health records of a patient. A data-driven approach is used to derive a parsimonious, discrete state space representation to represent the physiological condition of a given patient. Based on this model and a given cost function, an infinite-horizon discounted Markov decision process is formulated and solved numerically to compute an optimal discharge policy, whose performance is assessed using off-policy evaluation strategies. Extensive numerical experiments are performed to validate the proposed framework using real-life intensive care unit patient data.</span></span></p></div>\",\"PeriodicalId\":46320,\"journal\":{\"name\":\"Operations Research for Health Care\",\"volume\":\"38 \",\"pages\":\"Article 100400\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research for Health Care\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211692323000231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research for Health Care","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211692323000231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 2

摘要

植根于机器学习和优化的临床决策支持工具可以通过更好地管理重症监护室为医疗保健提供者提供重大价值。特别重要的是,重症监护室患者的出院决定要考虑到缩短住院时间和患者出院后再次入院或死亡风险之间的微妙权衡。这项工作引入了一个全面的框架(即,不针对任何特定的疾病或状况)来捕捉这种权衡,并在给定患者的电子健康记录的情况下建议最佳出院时间决策。数据驱动的方法用于推导简约的离散状态空间表示,以表示给定患者的生理状况。基于该模型和给定的成本函数,建立了一个无限时域折扣马尔可夫决策过程,并对其进行了数值求解,以计算最优排放策略,并使用非策略评估策略来评估其性能。使用真实的重症监护室患者数据进行了大量的数值实验,以验证所提出的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal discharge of patients from intensive care via a data-driven policy learning framework

Clinical decision support tools rooted in machine learning and optimization can provide significant value to healthcare providers through better management of intensive care units. In particular, it is important that intensive care unit patient discharge decisions account for the nuanced trade-off between decreasing the length of stay and the risk of readmission or death after discharge of a patient. This work introduces a comprehensive framework (i.e., not geared towards any particular disease or condition) for capturing this trade-off and to recommend optimal discharge timing decisions given the electronic health records of a patient. A data-driven approach is used to derive a parsimonious, discrete state space representation to represent the physiological condition of a given patient. Based on this model and a given cost function, an infinite-horizon discounted Markov decision process is formulated and solved numerically to compute an optimal discharge policy, whose performance is assessed using off-policy evaluation strategies. Extensive numerical experiments are performed to validate the proposed framework using real-life intensive care unit patient data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Operations Research for Health Care
Operations Research for Health Care HEALTH CARE SCIENCES & SERVICES-
CiteScore
3.90
自引率
0.00%
发文量
9
审稿时长
69 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信