非交换Ck函数与算子函数的Fréchet导数

IF 0.8 4区 数学 Q2 MATHEMATICS
Evangelos A. Nikitopoulos
{"title":"非交换Ck函数与算子函数的Fréchet导数","authors":"Evangelos A. Nikitopoulos","doi":"10.1016/j.exmath.2022.12.004","DOIUrl":null,"url":null,"abstract":"<div><p>Fix a unital <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>-algebra <span><math><mi>A</mi></math></span>, and write <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>sa</mi></mrow></msub></math></span> for the set of self-adjoint elements of <span><math><mi>A</mi></math></span>. Also, if <span><math><mrow><mi>f</mi><mo>:</mo><mi>R</mi><mo>→</mo><mi>ℂ</mi></mrow></math></span> is a continuous function, then write <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>:</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>sa</mi></mrow></msub><mo>→</mo><mi>A</mi></mrow></math></span> for the <em>operator function</em> <span><math><mrow><mi>a</mi><mo>↦</mo><mi>f</mi><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow></mrow></math></span> defined via functional calculus. In this paper, we introduce and study a space <span><math><mrow><mi>N</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> functions <span><math><mrow><mi>f</mi><mo>:</mo><mi>R</mi><mo>→</mo><mi>ℂ</mi></mrow></math></span> such that, no matter the choice of <span><math><mi>A</mi></math></span>, the operator function <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>:</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>sa</mi></mrow></msub><mo>→</mo><mi>A</mi></mrow></math></span> is <span><math><mi>k</mi></math></span>-times continuously Fréchet differentiable. In other words, if <span><math><mrow><mi>f</mi><mo>∈</mo><mi>N</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>, then <span><math><mi>f</mi></math></span> “lifts” to a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> map <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>:</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>sa</mi></mrow></msub><mo>→</mo><mi>A</mi></mrow></math></span>, for any (possibly noncommutative) unital <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>-algebra <span><math><mi>A</mi></math></span>. For this reason, we call <span><math><mrow><mi>N</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> the space of <em>noncommutative</em> <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> <em>functions</em>. Our proof that <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>sa</mi></mrow></msub><mo>;</mo><mi>A</mi><mo>)</mo></mrow></mrow></math></span>, which requires only knowledge of the Fréchet derivatives of polynomials and operator norm estimates for “multiple operator integrals” (MOIs), is more elementary than the standard approach; nevertheless, <span><math><mrow><mi>N</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> contains all functions for which comparable results are known. Specifically, we prove that <span><math><mrow><mi>N</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> contains the homogeneous Besov space <span><math><mrow><msubsup><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow><mrow><mn>1</mn></mrow><mrow><mi>k</mi><mo>,</mo><mi>∞</mi></mrow></msubsup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> and the Hölder space <span><math><mrow><msubsup><mrow><mi>C</mi></mrow><mrow><mi>loc</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>ɛ</mi></mrow></msubsup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>. We highlight, however, that the results in this paper are the first of their type to be proven for arbitrary unital <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>-algebras, and that the extension to such a general setting makes use of the author’s recent resolution of certain “separability issues” with the definition of MOIs. Finally, we prove by exhibiting specific examples that <span><math><mrow><msub><mrow><mi>W</mi></mrow><mrow><mi>k</mi></mrow></msub><msub><mrow><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow><mrow><mi>loc</mi></mrow></msub><mo>⊊</mo><mi>N</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>⊊</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>W</mi></mrow><mrow><mi>k</mi></mrow></msub><msub><mrow><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow><mrow><mi>loc</mi></mrow></msub></mrow></math></span> is the “localized” <span><math><mi>k</mi></math></span>th Wiener space.</p></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noncommutative Ck functions and Fréchet derivatives of operator functions\",\"authors\":\"Evangelos A. Nikitopoulos\",\"doi\":\"10.1016/j.exmath.2022.12.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fix a unital <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>-algebra <span><math><mi>A</mi></math></span>, and write <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>sa</mi></mrow></msub></math></span> for the set of self-adjoint elements of <span><math><mi>A</mi></math></span>. Also, if <span><math><mrow><mi>f</mi><mo>:</mo><mi>R</mi><mo>→</mo><mi>ℂ</mi></mrow></math></span> is a continuous function, then write <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>:</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>sa</mi></mrow></msub><mo>→</mo><mi>A</mi></mrow></math></span> for the <em>operator function</em> <span><math><mrow><mi>a</mi><mo>↦</mo><mi>f</mi><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow></mrow></math></span> defined via functional calculus. In this paper, we introduce and study a space <span><math><mrow><mi>N</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> functions <span><math><mrow><mi>f</mi><mo>:</mo><mi>R</mi><mo>→</mo><mi>ℂ</mi></mrow></math></span> such that, no matter the choice of <span><math><mi>A</mi></math></span>, the operator function <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>:</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>sa</mi></mrow></msub><mo>→</mo><mi>A</mi></mrow></math></span> is <span><math><mi>k</mi></math></span>-times continuously Fréchet differentiable. In other words, if <span><math><mrow><mi>f</mi><mo>∈</mo><mi>N</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>, then <span><math><mi>f</mi></math></span> “lifts” to a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> map <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>:</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>sa</mi></mrow></msub><mo>→</mo><mi>A</mi></mrow></math></span>, for any (possibly noncommutative) unital <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>-algebra <span><math><mi>A</mi></math></span>. For this reason, we call <span><math><mrow><mi>N</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> the space of <em>noncommutative</em> <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> <em>functions</em>. Our proof that <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>sa</mi></mrow></msub><mo>;</mo><mi>A</mi><mo>)</mo></mrow></mrow></math></span>, which requires only knowledge of the Fréchet derivatives of polynomials and operator norm estimates for “multiple operator integrals” (MOIs), is more elementary than the standard approach; nevertheless, <span><math><mrow><mi>N</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> contains all functions for which comparable results are known. Specifically, we prove that <span><math><mrow><mi>N</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> contains the homogeneous Besov space <span><math><mrow><msubsup><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow><mrow><mn>1</mn></mrow><mrow><mi>k</mi><mo>,</mo><mi>∞</mi></mrow></msubsup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> and the Hölder space <span><math><mrow><msubsup><mrow><mi>C</mi></mrow><mrow><mi>loc</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>ɛ</mi></mrow></msubsup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>. We highlight, however, that the results in this paper are the first of their type to be proven for arbitrary unital <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>-algebras, and that the extension to such a general setting makes use of the author’s recent resolution of certain “separability issues” with the definition of MOIs. Finally, we prove by exhibiting specific examples that <span><math><mrow><msub><mrow><mi>W</mi></mrow><mrow><mi>k</mi></mrow></msub><msub><mrow><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow><mrow><mi>loc</mi></mrow></msub><mo>⊊</mo><mi>N</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>⊊</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>W</mi></mrow><mrow><mi>k</mi></mrow></msub><msub><mrow><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow><mrow><mi>loc</mi></mrow></msub></mrow></math></span> is the “localized” <span><math><mi>k</mi></math></span>th Wiener space.</p></div>\",\"PeriodicalId\":50458,\"journal\":{\"name\":\"Expositiones Mathematicae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expositiones Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0723086922000834\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expositiones Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723086922000834","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

固定一个单位C*-代数a,并为a的自伴随元素集写Asa。此外,如果f:R→ℂ 是连续函数,则写fA:Asa→A用于操作员功能A↦f(a)通过函数演算定义。本文介绍并研究了Ck函数f:R的一个空间NCk(R)→ℂ 这样,无论选择A,运算符函数fA:Asa→A是连续的k次Fréchet可微的。换句话说,如果f∈NCk(R),则f“提升”到Ck映射fA:Asa→A、 对于任何(可能是非对易的)单位C*-代数A。因此,我们称NCk(R)为非对易Ck函数的空间。我们的证明fA∈Ck(Asa;A),只需要知道多项式的Fréchet导数和“多算子积分”(MOI)的算子范数估计,比标准方法更基本;然而,NCk(R)包含已知可比较结果的所有函数。具体地,我们证明了NCk(R)包含齐次Besov空间Ḃ1k,∞(R)和Hölder空间Clock(R)。然而,我们强调,本文中的结果是第一个被证明适用于任意单位C*-代数的结果,并且对这种一般设置的扩展利用了作者最近对MOI定义中某些“可分性问题”的解决方案。最后,我们通过展示具体的例子证明了Wk(R)loc⊊NCk(R。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noncommutative Ck functions and Fréchet derivatives of operator functions

Fix a unital C-algebra A, and write Asa for the set of self-adjoint elements of A. Also, if f:R is a continuous function, then write fA:AsaA for the operator function af(a) defined via functional calculus. In this paper, we introduce and study a space NCk(R) of Ck functions f:R such that, no matter the choice of A, the operator function fA:AsaA is k-times continuously Fréchet differentiable. In other words, if fNCk(R), then f “lifts” to a Ck map fA:AsaA, for any (possibly noncommutative) unital C-algebra A. For this reason, we call NCk(R) the space of noncommutative Ck functions. Our proof that fACk(Asa;A), which requires only knowledge of the Fréchet derivatives of polynomials and operator norm estimates for “multiple operator integrals” (MOIs), is more elementary than the standard approach; nevertheless, NCk(R) contains all functions for which comparable results are known. Specifically, we prove that NCk(R) contains the homogeneous Besov space Ḃ1k,(R) and the Hölder space Clock,ɛ(R). We highlight, however, that the results in this paper are the first of their type to be proven for arbitrary unital C-algebras, and that the extension to such a general setting makes use of the author’s recent resolution of certain “separability issues” with the definition of MOIs. Finally, we prove by exhibiting specific examples that Wk(R)locNCk(R)Ck(R), where Wk(R)loc is the “localized” kth Wiener space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
41
审稿时长
40 days
期刊介绍: Our aim is to publish papers of interest to a wide mathematical audience. Our main interest is in expository articles that make high-level research results more widely accessible. In general, material submitted should be at least at the graduate level.Main articles must be written in such a way that a graduate-level research student interested in the topic of the paper can read them profitably. When the topic is quite specialized, or the main focus is a narrow research result, the paper is probably not appropriate for this journal. Most original research articles are not suitable for this journal, unless they have particularly broad appeal.Mathematical notes can be more focused than main articles. These should not simply be short research articles, but should address a mathematical question with reasonably broad appeal. Elementary solutions of elementary problems are typically not appropriate. Neither are overly technical papers, which should best be submitted to a specialized research journal.Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication. Submitted papers are subject to a quick overview before entering into a more detailed review process. All published papers have been refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信