J. Sun , Q. Liu , Y. Wang , L. Wang , X. Song , X. Zhao
{"title":"基于遗传算法改进深度神经网络的癌症五年预后模型","authors":"J. Sun , Q. Liu , Y. Wang , L. Wang , X. Song , X. Zhao","doi":"10.1016/j.irbm.2022.100748","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p><span>Esophageal cancer is a high occult malignant tumor. Even with good diagnosis and treatment, the 5-year survival rate of esophageal </span>cancer patients is still less than 30%. Considering the influence of clinical characteristics on postoperative esophageal cancer patients, the construction of a neural network model will help improve the poor prognosis of patients in the five years.</p></div><div><h3>Material and methods</h3><p><span>In this study, genetic algorithm optimized </span>deep neural network<span> is exploited to the clinical dataset of esophageal cancer. The independent prognostic factors are screened by Relief algorithm and Cox proportional risk regression. FTD prognostic staging system is established to assess the risk level of esophageal cancer patients.</span></p></div><div><h3>Results</h3><p>FTD staging system and independent prognostic factors are integrated into the genetic algorithm optimized deep neural network. The Area Under Curve (AUC) of FTD staging system is 0.802. FTD staging system is verified by the Kaplan-Meier survival curve, and the median survival time is divided for different risk grades. The FTD staging system is superior to the TNM stages in the prognosis effect. The AUC of deep neural network optimized by genetic algorithm is 0.91.</p></div><div><h3>Conclusion</h3><p>The deep neural network optimized by genetic algorithm has good performance in predicting the 5-year survival status of esophageal cancer patients. The FTD staging system has a significant prognostic effect. The FTD staging system and genetic algorithm optimized deep neural network can be successfully availed in clinical diagnosis and treatment.</p></div>","PeriodicalId":14605,"journal":{"name":"Irbm","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Five-Year Prognosis Model of Esophageal Cancer Based on Genetic Algorithm Improved Deep Neural Network\",\"authors\":\"J. Sun , Q. Liu , Y. Wang , L. Wang , X. Song , X. Zhao\",\"doi\":\"10.1016/j.irbm.2022.100748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><p><span>Esophageal cancer is a high occult malignant tumor. Even with good diagnosis and treatment, the 5-year survival rate of esophageal </span>cancer patients is still less than 30%. Considering the influence of clinical characteristics on postoperative esophageal cancer patients, the construction of a neural network model will help improve the poor prognosis of patients in the five years.</p></div><div><h3>Material and methods</h3><p><span>In this study, genetic algorithm optimized </span>deep neural network<span> is exploited to the clinical dataset of esophageal cancer. The independent prognostic factors are screened by Relief algorithm and Cox proportional risk regression. FTD prognostic staging system is established to assess the risk level of esophageal cancer patients.</span></p></div><div><h3>Results</h3><p>FTD staging system and independent prognostic factors are integrated into the genetic algorithm optimized deep neural network. The Area Under Curve (AUC) of FTD staging system is 0.802. FTD staging system is verified by the Kaplan-Meier survival curve, and the median survival time is divided for different risk grades. The FTD staging system is superior to the TNM stages in the prognosis effect. The AUC of deep neural network optimized by genetic algorithm is 0.91.</p></div><div><h3>Conclusion</h3><p>The deep neural network optimized by genetic algorithm has good performance in predicting the 5-year survival status of esophageal cancer patients. The FTD staging system has a significant prognostic effect. The FTD staging system and genetic algorithm optimized deep neural network can be successfully availed in clinical diagnosis and treatment.</p></div>\",\"PeriodicalId\":14605,\"journal\":{\"name\":\"Irbm\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Irbm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1959031822001245\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irbm","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1959031822001245","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Five-Year Prognosis Model of Esophageal Cancer Based on Genetic Algorithm Improved Deep Neural Network
Objectives
Esophageal cancer is a high occult malignant tumor. Even with good diagnosis and treatment, the 5-year survival rate of esophageal cancer patients is still less than 30%. Considering the influence of clinical characteristics on postoperative esophageal cancer patients, the construction of a neural network model will help improve the poor prognosis of patients in the five years.
Material and methods
In this study, genetic algorithm optimized deep neural network is exploited to the clinical dataset of esophageal cancer. The independent prognostic factors are screened by Relief algorithm and Cox proportional risk regression. FTD prognostic staging system is established to assess the risk level of esophageal cancer patients.
Results
FTD staging system and independent prognostic factors are integrated into the genetic algorithm optimized deep neural network. The Area Under Curve (AUC) of FTD staging system is 0.802. FTD staging system is verified by the Kaplan-Meier survival curve, and the median survival time is divided for different risk grades. The FTD staging system is superior to the TNM stages in the prognosis effect. The AUC of deep neural network optimized by genetic algorithm is 0.91.
Conclusion
The deep neural network optimized by genetic algorithm has good performance in predicting the 5-year survival status of esophageal cancer patients. The FTD staging system has a significant prognostic effect. The FTD staging system and genetic algorithm optimized deep neural network can be successfully availed in clinical diagnosis and treatment.
期刊介绍:
IRBM is the journal of the AGBM (Alliance for engineering in Biology an Medicine / Alliance pour le génie biologique et médical) and the SFGBM (BioMedical Engineering French Society / Société française de génie biologique médical) and the AFIB (French Association of Biomedical Engineers / Association française des ingénieurs biomédicaux).
As a vehicle of information and knowledge in the field of biomedical technologies, IRBM is devoted to fundamental as well as clinical research. Biomedical engineering and use of new technologies are the cornerstones of IRBM, providing authors and users with the latest information. Its six issues per year propose reviews (state-of-the-art and current knowledge), original articles directed at fundamental research and articles focusing on biomedical engineering. All articles are submitted to peer reviewers acting as guarantors for IRBM''s scientific and medical content. The field covered by IRBM includes all the discipline of Biomedical engineering. Thereby, the type of papers published include those that cover the technological and methodological development in:
-Physiological and Biological Signal processing (EEG, MEG, ECG…)-
Medical Image processing-
Biomechanics-
Biomaterials-
Medical Physics-
Biophysics-
Physiological and Biological Sensors-
Information technologies in healthcare-
Disability research-
Computational physiology-
…