{"title":"一种双针金银电极连续血糖监测装置","authors":"C. Ben Ali Hassine , A. Tekin","doi":"10.1016/j.irbm.2023.100752","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>Diabetes is a serious, long-term disease and the use of continuous glucose monitoring sensors can reduce reliance on other painful invasive blood testing methods such as the finger blood glucose<span> test. According to our work, a low-cost continuous glucose sensor has been developed based on electrochemical measurement techniques.</span></p></div><div><h3>Materials</h3><p><span><span>The sensor is based on a two needles system; a gold and a silver electrode are integrated into a circular shaped electronic </span>printed circuit board (PCB). The sensing part is based on biological electrochemical measurements. </span>Glucose oxidase<span> (Gox) was used as the active sensing element and ferrocene<span> (Fc) as a mediator. Simple and low-cost coating methods were used; these methods are self-assembled monolayers and deep coating. This will reduce the final cost of the sensor as no expensive technique was used. The electrical subsystem contains a low-noise and low-power trans-impedance front-end as well as a single-chip low-power Bluetooth microcontroller with a 12-bit Analog-to-Digital Converter (ADC).</span></span></p></div><div><h3>Results</h3><p>The sensor was tested in various concentrations of glucose. As a result of initial in vitro experiments, detailed analytical performance metrics are presented. The device has consistently shown a sensitivity of 3.059 mV/(mg/dl) reading with a linear range of 0-400 mg/dl.</p></div><div><h3>Conclusion</h3><p>The proposed study shows promising results for glucose detection. Thus, this type of sensor can be used for different analyzes targeting biological applications after further investigations and analysis.</p></div>","PeriodicalId":14605,"journal":{"name":"Irbm","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Double-Needle Gold-Silver Electrodes Continuous Glucose Monitoring Device\",\"authors\":\"C. Ben Ali Hassine , A. Tekin\",\"doi\":\"10.1016/j.irbm.2023.100752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><p>Diabetes is a serious, long-term disease and the use of continuous glucose monitoring sensors can reduce reliance on other painful invasive blood testing methods such as the finger blood glucose<span> test. According to our work, a low-cost continuous glucose sensor has been developed based on electrochemical measurement techniques.</span></p></div><div><h3>Materials</h3><p><span><span>The sensor is based on a two needles system; a gold and a silver electrode are integrated into a circular shaped electronic </span>printed circuit board (PCB). The sensing part is based on biological electrochemical measurements. </span>Glucose oxidase<span> (Gox) was used as the active sensing element and ferrocene<span> (Fc) as a mediator. Simple and low-cost coating methods were used; these methods are self-assembled monolayers and deep coating. This will reduce the final cost of the sensor as no expensive technique was used. The electrical subsystem contains a low-noise and low-power trans-impedance front-end as well as a single-chip low-power Bluetooth microcontroller with a 12-bit Analog-to-Digital Converter (ADC).</span></span></p></div><div><h3>Results</h3><p>The sensor was tested in various concentrations of glucose. As a result of initial in vitro experiments, detailed analytical performance metrics are presented. The device has consistently shown a sensitivity of 3.059 mV/(mg/dl) reading with a linear range of 0-400 mg/dl.</p></div><div><h3>Conclusion</h3><p>The proposed study shows promising results for glucose detection. Thus, this type of sensor can be used for different analyzes targeting biological applications after further investigations and analysis.</p></div>\",\"PeriodicalId\":14605,\"journal\":{\"name\":\"Irbm\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Irbm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1959031823000015\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irbm","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1959031823000015","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A Double-Needle Gold-Silver Electrodes Continuous Glucose Monitoring Device
Objectives
Diabetes is a serious, long-term disease and the use of continuous glucose monitoring sensors can reduce reliance on other painful invasive blood testing methods such as the finger blood glucose test. According to our work, a low-cost continuous glucose sensor has been developed based on electrochemical measurement techniques.
Materials
The sensor is based on a two needles system; a gold and a silver electrode are integrated into a circular shaped electronic printed circuit board (PCB). The sensing part is based on biological electrochemical measurements. Glucose oxidase (Gox) was used as the active sensing element and ferrocene (Fc) as a mediator. Simple and low-cost coating methods were used; these methods are self-assembled monolayers and deep coating. This will reduce the final cost of the sensor as no expensive technique was used. The electrical subsystem contains a low-noise and low-power trans-impedance front-end as well as a single-chip low-power Bluetooth microcontroller with a 12-bit Analog-to-Digital Converter (ADC).
Results
The sensor was tested in various concentrations of glucose. As a result of initial in vitro experiments, detailed analytical performance metrics are presented. The device has consistently shown a sensitivity of 3.059 mV/(mg/dl) reading with a linear range of 0-400 mg/dl.
Conclusion
The proposed study shows promising results for glucose detection. Thus, this type of sensor can be used for different analyzes targeting biological applications after further investigations and analysis.
期刊介绍:
IRBM is the journal of the AGBM (Alliance for engineering in Biology an Medicine / Alliance pour le génie biologique et médical) and the SFGBM (BioMedical Engineering French Society / Société française de génie biologique médical) and the AFIB (French Association of Biomedical Engineers / Association française des ingénieurs biomédicaux).
As a vehicle of information and knowledge in the field of biomedical technologies, IRBM is devoted to fundamental as well as clinical research. Biomedical engineering and use of new technologies are the cornerstones of IRBM, providing authors and users with the latest information. Its six issues per year propose reviews (state-of-the-art and current knowledge), original articles directed at fundamental research and articles focusing on biomedical engineering. All articles are submitted to peer reviewers acting as guarantors for IRBM''s scientific and medical content. The field covered by IRBM includes all the discipline of Biomedical engineering. Thereby, the type of papers published include those that cover the technological and methodological development in:
-Physiological and Biological Signal processing (EEG, MEG, ECG…)-
Medical Image processing-
Biomechanics-
Biomaterials-
Medical Physics-
Biophysics-
Physiological and Biological Sensors-
Information technologies in healthcare-
Disability research-
Computational physiology-
…