Yingjie Song , Gaoyang Zhao , Bin Zhang , Huayue Chen , Wuquan Deng , Wu Deng
{"title":"投资组合优化问题的一种改进的分布式差分进化算法","authors":"Yingjie Song , Gaoyang Zhao , Bin Zhang , Huayue Chen , Wuquan Deng , Wu Deng","doi":"10.1016/j.engappai.2023.106004","DOIUrl":null,"url":null,"abstract":"<div><p>The population structure of differential evolution (DE) algorithm cannot maintain the diversity of the population to the greatest extent and help the population avoid to fall into the local optima in time. In this paper, a co-evolutionary multi-swarm adaptive differential evolution algorithm<span>, namely ECMADE is proposed to solve the premature convergence and search stagnation. First of all, in terms of population structure, based on the parallel distributed framework, ECMADE randomly and evenly divides the population into exploration subpopulation, development subpopulation, and auxiliary subpopulation, and introduces an adaptive information exchange mechanism so that subpopulations can escape local optima in time. Then, a multi-operator parallel search strategy is proposed to keep population diversity and meet the optimization needs of different problems. Finally, an adaptive adjustment mechanism of control parameters is developed, through recent elite parameter archive and weight distribution to fully mine successful parameter information, and generate control parameters with a high success rate for the current evolutionary stage. In order to prove the effectiveness of the ECMADE, 10 test functions and portfolio optimization problem<span> are selected in here. The experiment results show that the ECMADE can effectively solve these test functions, the accuracy and efficiency is superior to those of two classical DE algorithms. The actual application results show that the ECMADE can significantly improve the ability of portfolio to resist extreme losses, which proves the effectiveness and feasibility of the ECMADE once again. The ECMADE has better optimization performance by comparing with some well-known algorithms in term of the solution quality, robustness and space distribution. It provides a new algorithm for solving complex optimization problems.</span></span></p></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"121 ","pages":"Article 106004"},"PeriodicalIF":8.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"An enhanced distributed differential evolution algorithm for portfolio optimization problems\",\"authors\":\"Yingjie Song , Gaoyang Zhao , Bin Zhang , Huayue Chen , Wuquan Deng , Wu Deng\",\"doi\":\"10.1016/j.engappai.2023.106004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The population structure of differential evolution (DE) algorithm cannot maintain the diversity of the population to the greatest extent and help the population avoid to fall into the local optima in time. In this paper, a co-evolutionary multi-swarm adaptive differential evolution algorithm<span>, namely ECMADE is proposed to solve the premature convergence and search stagnation. First of all, in terms of population structure, based on the parallel distributed framework, ECMADE randomly and evenly divides the population into exploration subpopulation, development subpopulation, and auxiliary subpopulation, and introduces an adaptive information exchange mechanism so that subpopulations can escape local optima in time. Then, a multi-operator parallel search strategy is proposed to keep population diversity and meet the optimization needs of different problems. Finally, an adaptive adjustment mechanism of control parameters is developed, through recent elite parameter archive and weight distribution to fully mine successful parameter information, and generate control parameters with a high success rate for the current evolutionary stage. In order to prove the effectiveness of the ECMADE, 10 test functions and portfolio optimization problem<span> are selected in here. The experiment results show that the ECMADE can effectively solve these test functions, the accuracy and efficiency is superior to those of two classical DE algorithms. The actual application results show that the ECMADE can significantly improve the ability of portfolio to resist extreme losses, which proves the effectiveness and feasibility of the ECMADE once again. The ECMADE has better optimization performance by comparing with some well-known algorithms in term of the solution quality, robustness and space distribution. It provides a new algorithm for solving complex optimization problems.</span></span></p></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"121 \",\"pages\":\"Article 106004\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197623001884\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197623001884","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
An enhanced distributed differential evolution algorithm for portfolio optimization problems
The population structure of differential evolution (DE) algorithm cannot maintain the diversity of the population to the greatest extent and help the population avoid to fall into the local optima in time. In this paper, a co-evolutionary multi-swarm adaptive differential evolution algorithm, namely ECMADE is proposed to solve the premature convergence and search stagnation. First of all, in terms of population structure, based on the parallel distributed framework, ECMADE randomly and evenly divides the population into exploration subpopulation, development subpopulation, and auxiliary subpopulation, and introduces an adaptive information exchange mechanism so that subpopulations can escape local optima in time. Then, a multi-operator parallel search strategy is proposed to keep population diversity and meet the optimization needs of different problems. Finally, an adaptive adjustment mechanism of control parameters is developed, through recent elite parameter archive and weight distribution to fully mine successful parameter information, and generate control parameters with a high success rate for the current evolutionary stage. In order to prove the effectiveness of the ECMADE, 10 test functions and portfolio optimization problem are selected in here. The experiment results show that the ECMADE can effectively solve these test functions, the accuracy and efficiency is superior to those of two classical DE algorithms. The actual application results show that the ECMADE can significantly improve the ability of portfolio to resist extreme losses, which proves the effectiveness and feasibility of the ECMADE once again. The ECMADE has better optimization performance by comparing with some well-known algorithms in term of the solution quality, robustness and space distribution. It provides a new algorithm for solving complex optimization problems.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.