{"title":"在钯催化的C-N偶联中,三苯基膦在双芳基骨架上的高效性的来源:DFT和机器学习的结合研究","authors":"Qingfu Ye , Yu Zhao , Jun Zhu","doi":"10.1016/j.aichem.2023.100005","DOIUrl":null,"url":null,"abstract":"<div><p>The Pd-catalyzed Buchwald–Hartwig coupling reaction is important in the construction of the C-N bond due to various applications in organic synthesis. Quantum chemical calculations are widely used in understanding reaction mechanisms whereas the machine learning method is extremely popular in recognizing the relationships of data. Here, we combine density functional theory calculations with the support vector regression method to probe the origin of the higher efficiency of terphenyl phosphine ligand over the biaryl counterpart in the Buchwald–Hartwig C-N coupling reaction. By quantum chemical calculations, the turnover frequency-determining transition states are located and ligand features are calculated with high accuracy. By machine learning, the relationship between the reaction barrier and ligand features has been examined. It is found that the interplay of the charge on the metal center, the cone angle of the ligands, and the Sterimol L parameters of the ligand determines the catalytic performance of the palladium catalysts with different phosphine ligands. Our findings could help experimental chemists to design the ligands for Pd-catalyzed C-N coupling reactions with high efficiency.</p></div>","PeriodicalId":72302,"journal":{"name":"Artificial intelligence chemistry","volume":"1 1","pages":"Article 100005"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing the origin of higher efficiency of terphenyl phosphine over the biaryl framework in Pd-catalyzed C-N coupling: A combined DFT and machine learning study\",\"authors\":\"Qingfu Ye , Yu Zhao , Jun Zhu\",\"doi\":\"10.1016/j.aichem.2023.100005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Pd-catalyzed Buchwald–Hartwig coupling reaction is important in the construction of the C-N bond due to various applications in organic synthesis. Quantum chemical calculations are widely used in understanding reaction mechanisms whereas the machine learning method is extremely popular in recognizing the relationships of data. Here, we combine density functional theory calculations with the support vector regression method to probe the origin of the higher efficiency of terphenyl phosphine ligand over the biaryl counterpart in the Buchwald–Hartwig C-N coupling reaction. By quantum chemical calculations, the turnover frequency-determining transition states are located and ligand features are calculated with high accuracy. By machine learning, the relationship between the reaction barrier and ligand features has been examined. It is found that the interplay of the charge on the metal center, the cone angle of the ligands, and the Sterimol L parameters of the ligand determines the catalytic performance of the palladium catalysts with different phosphine ligands. Our findings could help experimental chemists to design the ligands for Pd-catalyzed C-N coupling reactions with high efficiency.</p></div>\",\"PeriodicalId\":72302,\"journal\":{\"name\":\"Artificial intelligence chemistry\",\"volume\":\"1 1\",\"pages\":\"Article 100005\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949747723000052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949747723000052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Probing the origin of higher efficiency of terphenyl phosphine over the biaryl framework in Pd-catalyzed C-N coupling: A combined DFT and machine learning study
The Pd-catalyzed Buchwald–Hartwig coupling reaction is important in the construction of the C-N bond due to various applications in organic synthesis. Quantum chemical calculations are widely used in understanding reaction mechanisms whereas the machine learning method is extremely popular in recognizing the relationships of data. Here, we combine density functional theory calculations with the support vector regression method to probe the origin of the higher efficiency of terphenyl phosphine ligand over the biaryl counterpart in the Buchwald–Hartwig C-N coupling reaction. By quantum chemical calculations, the turnover frequency-determining transition states are located and ligand features are calculated with high accuracy. By machine learning, the relationship between the reaction barrier and ligand features has been examined. It is found that the interplay of the charge on the metal center, the cone angle of the ligands, and the Sterimol L parameters of the ligand determines the catalytic performance of the palladium catalysts with different phosphine ligands. Our findings could help experimental chemists to design the ligands for Pd-catalyzed C-N coupling reactions with high efficiency.