矩形螺旋星系仍然很坚硬

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Erik D. Demaine , Maarten Löffler , Christiane Schmidt
{"title":"矩形螺旋星系仍然很坚硬","authors":"Erik D. Demaine ,&nbsp;Maarten Löffler ,&nbsp;Christiane Schmidt","doi":"10.1016/j.comgeo.2022.101949","DOIUrl":null,"url":null,"abstract":"<div><p>Spiral Galaxies is a pencil-and-paper puzzle played on a grid of unit squares: given a set of points called <em>centers</em>, the goal is to partition the grid into polyominoes such that each polyomino contains exactly one center and is <span><math><msup><mrow><mn>180</mn></mrow><mrow><mo>∘</mo></mrow></msup></math></span> rotationally symmetric about its center. We show that this puzzle is NP-complete, ASP-complete, and #P-complete even if (a) all solutions to the puzzle have rectangles for polyominoes; or (b) the polyominoes are required to be rectangles and all solutions to the puzzle have just <span><math><mn>1</mn><mo>×</mo><mn>1</mn></math></span>, <span><math><mn>1</mn><mo>×</mo><mn>3</mn></math></span>, and <span><math><mn>3</mn><mo>×</mo><mn>1</mn></math></span> rectangles. The proof for the latter variant also implies NP/ASP/#P-completeness of finding a noncrossing perfect matching in distance-2 grid graphs where edges connect vertices of Euclidean distance 2. Moreover, we prove NP-completeness of the design problem of minimizing the number of centers such that there exists a set of galaxies that exactly cover a given shape.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rectangular Spiral Galaxies are still hard\",\"authors\":\"Erik D. Demaine ,&nbsp;Maarten Löffler ,&nbsp;Christiane Schmidt\",\"doi\":\"10.1016/j.comgeo.2022.101949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spiral Galaxies is a pencil-and-paper puzzle played on a grid of unit squares: given a set of points called <em>centers</em>, the goal is to partition the grid into polyominoes such that each polyomino contains exactly one center and is <span><math><msup><mrow><mn>180</mn></mrow><mrow><mo>∘</mo></mrow></msup></math></span> rotationally symmetric about its center. We show that this puzzle is NP-complete, ASP-complete, and #P-complete even if (a) all solutions to the puzzle have rectangles for polyominoes; or (b) the polyominoes are required to be rectangles and all solutions to the puzzle have just <span><math><mn>1</mn><mo>×</mo><mn>1</mn></math></span>, <span><math><mn>1</mn><mo>×</mo><mn>3</mn></math></span>, and <span><math><mn>3</mn><mo>×</mo><mn>1</mn></math></span> rectangles. The proof for the latter variant also implies NP/ASP/#P-completeness of finding a noncrossing perfect matching in distance-2 grid graphs where edges connect vertices of Euclidean distance 2. Moreover, we prove NP-completeness of the design problem of minimizing the number of centers such that there exists a set of galaxies that exactly cover a given shape.</p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092577212200092X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092577212200092X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

螺旋星系是一个在单位正方形网格上玩的纸笔拼图游戏:给定一组称为中心的点,目标是将网格划分为多角星系,使每个多角星系恰好包含一个中心,并绕其中心180∘旋转对称。我们证明了这个谜题是NP完全的、ASP完全的和#P完全的,即使(a)谜题的所有解都有多面体的矩形;或者(b)多面体必须是矩形,并且该谜题的所有解只有1×1、1×3和3×1个矩形。后一种变体的证明也暗示了在距离为2的网格图中找到非交叉完全匹配的NP/ASP/#P-完全性,其中边连接欧几里得距离2的顶点。此外,我们证明了最小化中心数量的设计问题的NP完备性,使得存在一组完全覆盖给定形状的星系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rectangular Spiral Galaxies are still hard

Spiral Galaxies is a pencil-and-paper puzzle played on a grid of unit squares: given a set of points called centers, the goal is to partition the grid into polyominoes such that each polyomino contains exactly one center and is 180 rotationally symmetric about its center. We show that this puzzle is NP-complete, ASP-complete, and #P-complete even if (a) all solutions to the puzzle have rectangles for polyominoes; or (b) the polyominoes are required to be rectangles and all solutions to the puzzle have just 1×1, 1×3, and 3×1 rectangles. The proof for the latter variant also implies NP/ASP/#P-completeness of finding a noncrossing perfect matching in distance-2 grid graphs where edges connect vertices of Euclidean distance 2. Moreover, we prove NP-completeness of the design problem of minimizing the number of centers such that there exists a set of galaxies that exactly cover a given shape.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信