{"title":"四边形网格与多边形网格的距离有多近?","authors":"Markus Baumeister, Leif Kobbelt","doi":"10.1016/j.comgeo.2022.101978","DOIUrl":null,"url":null,"abstract":"<div><p>We compute the shortest sequence of local connectivity modifications that transform a genus 0 quad mesh to a polycube. The modification operations are (dual) loop preserving and thus, we are restricted to quad meshes where loops don't self-intersect and two loops intersect at most twice. The intersection patterns of the loops are encoded in a simplicial complex, which we call loop complex. To formulate the modification search over the loop complex, we characterise polycubes combinatorially and determine dependencies between modifications. We show that the full task can be encoded as a mixed-integer problem that is solved by a commodity MIP-solver. We demonstrate the practical feasibility by a number of examples with varying complexity.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How close is a quad mesh to a polycube?\",\"authors\":\"Markus Baumeister, Leif Kobbelt\",\"doi\":\"10.1016/j.comgeo.2022.101978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We compute the shortest sequence of local connectivity modifications that transform a genus 0 quad mesh to a polycube. The modification operations are (dual) loop preserving and thus, we are restricted to quad meshes where loops don't self-intersect and two loops intersect at most twice. The intersection patterns of the loops are encoded in a simplicial complex, which we call loop complex. To formulate the modification search over the loop complex, we characterise polycubes combinatorially and determine dependencies between modifications. We show that the full task can be encoded as a mixed-integer problem that is solved by a commodity MIP-solver. We demonstrate the practical feasibility by a number of examples with varying complexity.</p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772122001213\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772122001213","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
We compute the shortest sequence of local connectivity modifications that transform a genus 0 quad mesh to a polycube. The modification operations are (dual) loop preserving and thus, we are restricted to quad meshes where loops don't self-intersect and two loops intersect at most twice. The intersection patterns of the loops are encoded in a simplicial complex, which we call loop complex. To formulate the modification search over the loop complex, we characterise polycubes combinatorially and determine dependencies between modifications. We show that the full task can be encoded as a mixed-integer problem that is solved by a commodity MIP-solver. We demonstrate the practical feasibility by a number of examples with varying complexity.
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.