{"title":"正则多面体的展开与网","authors":"Satyan L. Devadoss , Matthew Harvey","doi":"10.1016/j.comgeo.2022.101977","DOIUrl":null,"url":null,"abstract":"<div><p><span>Over a decade ago, it was shown that every edge unfolding of the Platonic solids<span> was without self-overlap, yielding a valid net. We consider this property for their higher-dimensional analogs, the regular polytopes. Three classes of regular polytopes exist for all dimensions (</span></span><em>n</em>-simplex, <em>n</em>-cube, <em>n</em>-orthoplex) and three additional regular polytopes appear only in four-dimensions (24-cell, 120-cell, 600-cell). It was recently proven that all unfoldings of the <em>n</em>-cube yield nets. We extend this to the <em>n</em><span><span>-simplex and the 4-orthoplex using the geometry of simplicial chains. Finally, we demonstrate failure of this property for any orthoplex of higher dimension, as well as for the 600-cell, providing </span>counterexamples. We conjecture failure for the two remaining open cases, the 24-cell and the 120-cell.</span></p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unfoldings and nets of regular polytopes\",\"authors\":\"Satyan L. Devadoss , Matthew Harvey\",\"doi\":\"10.1016/j.comgeo.2022.101977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Over a decade ago, it was shown that every edge unfolding of the Platonic solids<span> was without self-overlap, yielding a valid net. We consider this property for their higher-dimensional analogs, the regular polytopes. Three classes of regular polytopes exist for all dimensions (</span></span><em>n</em>-simplex, <em>n</em>-cube, <em>n</em>-orthoplex) and three additional regular polytopes appear only in four-dimensions (24-cell, 120-cell, 600-cell). It was recently proven that all unfoldings of the <em>n</em>-cube yield nets. We extend this to the <em>n</em><span><span>-simplex and the 4-orthoplex using the geometry of simplicial chains. Finally, we demonstrate failure of this property for any orthoplex of higher dimension, as well as for the 600-cell, providing </span>counterexamples. We conjecture failure for the two remaining open cases, the 24-cell and the 120-cell.</span></p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772122001201\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772122001201","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Over a decade ago, it was shown that every edge unfolding of the Platonic solids was without self-overlap, yielding a valid net. We consider this property for their higher-dimensional analogs, the regular polytopes. Three classes of regular polytopes exist for all dimensions (n-simplex, n-cube, n-orthoplex) and three additional regular polytopes appear only in four-dimensions (24-cell, 120-cell, 600-cell). It was recently proven that all unfoldings of the n-cube yield nets. We extend this to the n-simplex and the 4-orthoplex using the geometry of simplicial chains. Finally, we demonstrate failure of this property for any orthoplex of higher dimension, as well as for the 600-cell, providing counterexamples. We conjecture failure for the two remaining open cases, the 24-cell and the 120-cell.
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.