不可再生资源并行机负载平衡问题的EPTAS

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
G. Jaykrishnan, Asaf Levin
{"title":"不可再生资源并行机负载平衡问题的EPTAS","authors":"G. Jaykrishnan,&nbsp;Asaf Levin","doi":"10.1016/j.disopt.2023.100775","DOIUrl":null,"url":null,"abstract":"<div><p>The problem considered is the non-preemptive scheduling of independent jobs that consume a resource (which is non-renewable and replenished regularly) on parallel uniformly related machines. The input defines the speed of machines, size of jobs, the quantity of the resource required by the jobs, the replenished quantities, and replenishment dates of the resource. Every job can start processing only after the required quantity of the resource is allocated to the job. The objective function is a generalization of makespan minimization and minimization of the <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span><span>-norm of the vector of loads of the machines. We present an EPTAS for this problem. Prior to our work only a PTAS was known in this non-renewable resource settings only for the special case of our problem of makespan minimization on identical machines.</span></p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"48 ","pages":"Article 100775"},"PeriodicalIF":0.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EPTAS for load balancing problem on parallel machines with a non-renewable resource\",\"authors\":\"G. Jaykrishnan,&nbsp;Asaf Levin\",\"doi\":\"10.1016/j.disopt.2023.100775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The problem considered is the non-preemptive scheduling of independent jobs that consume a resource (which is non-renewable and replenished regularly) on parallel uniformly related machines. The input defines the speed of machines, size of jobs, the quantity of the resource required by the jobs, the replenished quantities, and replenishment dates of the resource. Every job can start processing only after the required quantity of the resource is allocated to the job. The objective function is a generalization of makespan minimization and minimization of the <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span><span>-norm of the vector of loads of the machines. We present an EPTAS for this problem. Prior to our work only a PTAS was known in this non-renewable resource settings only for the special case of our problem of makespan minimization on identical machines.</span></p></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":\"48 \",\"pages\":\"Article 100775\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528623000178\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528623000178","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

所考虑的问题是在并行一致相关机器上消耗资源(不可再生且定期补充)的独立作业的非抢占式调度。输入定义机器的速度、作业的大小、作业所需的资源数量、补充的数量以及资源的补充日期。每个作业只有在分配了所需数量的资源后才能开始处理。目标函数是机器负载向量的lp范数的完工期最小化和最小化的推广。我们针对这个问题提出了EPTAS。在我们的工作之前,在这种不可再生资源环境中,只有一个PTAS是已知的,只是针对我们在相同机器上最大化生产时间问题的特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EPTAS for load balancing problem on parallel machines with a non-renewable resource

The problem considered is the non-preemptive scheduling of independent jobs that consume a resource (which is non-renewable and replenished regularly) on parallel uniformly related machines. The input defines the speed of machines, size of jobs, the quantity of the resource required by the jobs, the replenished quantities, and replenishment dates of the resource. Every job can start processing only after the required quantity of the resource is allocated to the job. The objective function is a generalization of makespan minimization and minimization of the lp-norm of the vector of loads of the machines. We present an EPTAS for this problem. Prior to our work only a PTAS was known in this non-renewable resource settings only for the special case of our problem of makespan minimization on identical machines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Optimization
Discrete Optimization 管理科学-应用数学
CiteScore
2.10
自引率
9.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信