Oswin Aichholzer , David Eppstein , Eva-Maria Hainzl
{"title":"几何支配集——三线问题的最小形式","authors":"Oswin Aichholzer , David Eppstein , Eva-Maria Hainzl","doi":"10.1016/j.comgeo.2022.101913","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a minimizing variant of the well-known <em>No-Three-In-Line Problem</em>, the <span><em>Geometric </em><em>Dominating Set</em><em> Problem</em></span>: What is the smallest number of points in an <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> grid such that every grid point lies on a common line with two of the points in the set? We show a lower bound of <span><math><mi>Ω</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup><mo>)</mo></math></span> points and provide a constructive upper bound of size <span><math><mn>2</mn><mo>⌈</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌉</mo></math></span>. If the points of the dominating sets are required to be in general position we provide optimal solutions for grids of size up to <span><math><mn>12</mn><mo>×</mo><mn>12</mn></math></span>. For arbitrary <em>n</em> the currently best upper bound for points in general position remains the obvious 2<em>n</em>. Finally, we discuss the problem on the discrete torus where we prove an upper bound of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></math></span>. For <em>n</em> even or a multiple of 3, we can even show a constant upper bound of 4. We also mention a number of open questions and some further variations of the problem.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Geometric dominating sets - a minimum version of the No-Three-In-Line Problem\",\"authors\":\"Oswin Aichholzer , David Eppstein , Eva-Maria Hainzl\",\"doi\":\"10.1016/j.comgeo.2022.101913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a minimizing variant of the well-known <em>No-Three-In-Line Problem</em>, the <span><em>Geometric </em><em>Dominating Set</em><em> Problem</em></span>: What is the smallest number of points in an <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> grid such that every grid point lies on a common line with two of the points in the set? We show a lower bound of <span><math><mi>Ω</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup><mo>)</mo></math></span> points and provide a constructive upper bound of size <span><math><mn>2</mn><mo>⌈</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌉</mo></math></span>. If the points of the dominating sets are required to be in general position we provide optimal solutions for grids of size up to <span><math><mn>12</mn><mo>×</mo><mn>12</mn></math></span>. For arbitrary <em>n</em> the currently best upper bound for points in general position remains the obvious 2<em>n</em>. Finally, we discuss the problem on the discrete torus where we prove an upper bound of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></math></span>. For <em>n</em> even or a multiple of 3, we can even show a constant upper bound of 4. We also mention a number of open questions and some further variations of the problem.</p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772122000566\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772122000566","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Geometric dominating sets - a minimum version of the No-Three-In-Line Problem
We consider a minimizing variant of the well-known No-Three-In-Line Problem, the Geometric Dominating Set Problem: What is the smallest number of points in an grid such that every grid point lies on a common line with two of the points in the set? We show a lower bound of points and provide a constructive upper bound of size . If the points of the dominating sets are required to be in general position we provide optimal solutions for grids of size up to . For arbitrary n the currently best upper bound for points in general position remains the obvious 2n. Finally, we discuss the problem on the discrete torus where we prove an upper bound of . For n even or a multiple of 3, we can even show a constant upper bound of 4. We also mention a number of open questions and some further variations of the problem.
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.