奇数交叉数的交叉引理

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
János Karl , Géza Tóth
{"title":"奇数交叉数的交叉引理","authors":"János Karl ,&nbsp;Géza Tóth","doi":"10.1016/j.comgeo.2022.101901","DOIUrl":null,"url":null,"abstract":"<div><p>A graph is 1-planar, if it can be drawn in the plane such that there is at most one crossing on every edge. It is known, that 1-planar graphs have at most <span><math><mn>4</mn><mi>n</mi><mo>−</mo><mn>8</mn></math></span> edges.</p><p>We prove the following odd-even generalization. If a graph can be drawn in the plane such that every edge is crossed by at most one other edge <em>an odd number of times</em>, then it is called 1-odd-planar and it has at most <span><math><mn>5</mn><mi>n</mi><mo>−</mo><mn>9</mn></math></span> edges. As a consequence, we improve the constant in the Crossing Lemma for the odd-crossing number, if adjacent edges cross an even number of times. We also give upper bound for the number of edges of <em>k</em>-odd-planar graphs.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crossing lemma for the odd-crossing number\",\"authors\":\"János Karl ,&nbsp;Géza Tóth\",\"doi\":\"10.1016/j.comgeo.2022.101901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A graph is 1-planar, if it can be drawn in the plane such that there is at most one crossing on every edge. It is known, that 1-planar graphs have at most <span><math><mn>4</mn><mi>n</mi><mo>−</mo><mn>8</mn></math></span> edges.</p><p>We prove the following odd-even generalization. If a graph can be drawn in the plane such that every edge is crossed by at most one other edge <em>an odd number of times</em>, then it is called 1-odd-planar and it has at most <span><math><mn>5</mn><mi>n</mi><mo>−</mo><mn>9</mn></math></span> edges. As a consequence, we improve the constant in the Crossing Lemma for the odd-crossing number, if adjacent edges cross an even number of times. We also give upper bound for the number of edges of <em>k</em>-odd-planar graphs.</p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092577212200044X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092577212200044X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果图可以在平面中绘制,使得每条边上最多有一个交点,那么它就是1-平面的。众所周知,1-平面图最多有4n-8条边。我们证明了以下奇偶推广。如果一个图可以在平面上绘制,使得每条边最多与另一条边相交奇数次,那么它被称为1-odd-planar,并且最多有5n-9条边。因此,如果相邻边交叉偶数次,我们改进了奇数交叉数的交叉引理中的常数。给出了k-奇平面图的边数的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crossing lemma for the odd-crossing number

A graph is 1-planar, if it can be drawn in the plane such that there is at most one crossing on every edge. It is known, that 1-planar graphs have at most 4n8 edges.

We prove the following odd-even generalization. If a graph can be drawn in the plane such that every edge is crossed by at most one other edge an odd number of times, then it is called 1-odd-planar and it has at most 5n9 edges. As a consequence, we improve the constant in the Crossing Lemma for the odd-crossing number, if adjacent edges cross an even number of times. We also give upper bound for the number of edges of k-odd-planar graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信