2π3-MST的一个4-近似

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Stav Ashur, Matthew J. Katz
{"title":"2π3-MST的一个4-近似","authors":"Stav Ashur,&nbsp;Matthew J. Katz","doi":"10.1016/j.comgeo.2022.101914","DOIUrl":null,"url":null,"abstract":"<div><p><span>Bounded-angle (minimum) spanning trees were first introduced in the context of wireless networks with directional antennas. They are reminiscent of bounded-degree (minimum) spanning trees, which have received significant attention. Let </span><em>P</em> be a set of <em>n</em> points in the plane, and let <span><math><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>2</mn><mi>π</mi></math></span> be an angle. An <em>α</em>-spanning tree (<em>α</em>-ST) of <em>P</em> is a spanning tree of the complete Euclidean graph over <em>P</em>, with the following property: For each vertex <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>P</mi></math></span>, the (smallest) angle that is spanned by all the edges incident to <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is at most <em>α</em>. An <em>α</em>-minimum spanning tree (<em>α</em>-MST) is an <em>α</em>-ST of <em>P</em> of minimum weight, where the weight of an <em>α</em>-ST is the sum of the lengths of its edges. In this paper, we consider the problem of computing an <em>α</em>-MST for the case where <span><math><mi>α</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>. We present a 4-approximation algorithm, thus improving upon the previous results of Aschner and Katz and Biniaz et al., who presented algorithms with approximation ratios 6 and <span><math><mfrac><mrow><mn>16</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>, respectively.</p><p>To obtain this result, we devise an <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span><span>-time algorithm that, given any Hamiltonian path Π of </span><em>P</em>, constructs a <span><math><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>-ST <span><math><mi>T</mi></math></span> of <em>P</em>, such that <span><math><mi>T</mi></math></span>'s weight is at most twice that of Π and, moreover, <span><math><mi>T</mi></math></span> is a 3-hop spanner of Π. This latter result is optimal (with respect to <span><math><mi>T</mi></math></span>'s weight), since for any <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span> there exists a polygonal path for which every <span><math><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>-ST (of the corresponding set of points) has weight greater than <span><math><mn>2</mn><mo>−</mo><mi>ε</mi></math></span> times the weight of the path.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 4-approximation of the 2π3-MST\",\"authors\":\"Stav Ashur,&nbsp;Matthew J. Katz\",\"doi\":\"10.1016/j.comgeo.2022.101914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Bounded-angle (minimum) spanning trees were first introduced in the context of wireless networks with directional antennas. They are reminiscent of bounded-degree (minimum) spanning trees, which have received significant attention. Let </span><em>P</em> be a set of <em>n</em> points in the plane, and let <span><math><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>2</mn><mi>π</mi></math></span> be an angle. An <em>α</em>-spanning tree (<em>α</em>-ST) of <em>P</em> is a spanning tree of the complete Euclidean graph over <em>P</em>, with the following property: For each vertex <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>P</mi></math></span>, the (smallest) angle that is spanned by all the edges incident to <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is at most <em>α</em>. An <em>α</em>-minimum spanning tree (<em>α</em>-MST) is an <em>α</em>-ST of <em>P</em> of minimum weight, where the weight of an <em>α</em>-ST is the sum of the lengths of its edges. In this paper, we consider the problem of computing an <em>α</em>-MST for the case where <span><math><mi>α</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>. We present a 4-approximation algorithm, thus improving upon the previous results of Aschner and Katz and Biniaz et al., who presented algorithms with approximation ratios 6 and <span><math><mfrac><mrow><mn>16</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>, respectively.</p><p>To obtain this result, we devise an <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span><span>-time algorithm that, given any Hamiltonian path Π of </span><em>P</em>, constructs a <span><math><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>-ST <span><math><mi>T</mi></math></span> of <em>P</em>, such that <span><math><mi>T</mi></math></span>'s weight is at most twice that of Π and, moreover, <span><math><mi>T</mi></math></span> is a 3-hop spanner of Π. This latter result is optimal (with respect to <span><math><mi>T</mi></math></span>'s weight), since for any <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span> there exists a polygonal path for which every <span><math><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>-ST (of the corresponding set of points) has weight greater than <span><math><mn>2</mn><mo>−</mo><mi>ε</mi></math></span> times the weight of the path.</p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772122000578\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772122000578","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

有界角(最小)生成树最初是在具有定向天线的无线网络的背景下引入的。它们让人想起了有界度(最小)生成树,它已经受到了极大的关注。设P是平面中的n个点的集合,并且设0<;α<;2π是一个角度。P的一个α-生成树(α-ST)是P上完全欧几里得图的生成树,具有以下性质:对于每个顶点pi∈P,所有入射到pi的边所跨越的(最小)角度至多为α。α-最小生成树(α-MST)是P的最小权的α-ST,其中α-ST的权是其边的长度之和。在本文中,我们考虑了在α=2π3的情况下计算α-MST的问题。我们提出了一种4近似算法,从而改进了Aschner和Katz以及Biniaz等人之前的结果,他们分别提出了近似比为6和163的算法。为了得到这个结果,我们设计了一个O(n)-时间算法,该算法在给定P的任何哈密顿路径π的情况下,构造了P的2π3-ST T,使得T的权重至多是π的两倍,并且T是π的三跳扳手。后一个结果是最优的(相对于T的权重),因为对于任何ε>;0存在一条多边形路径,其中(对应点集的)每2π3-ST的权重都大于路径权重的2-ε倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 4-approximation of the 2π3-MST

Bounded-angle (minimum) spanning trees were first introduced in the context of wireless networks with directional antennas. They are reminiscent of bounded-degree (minimum) spanning trees, which have received significant attention. Let P be a set of n points in the plane, and let 0<α<2π be an angle. An α-spanning tree (α-ST) of P is a spanning tree of the complete Euclidean graph over P, with the following property: For each vertex piP, the (smallest) angle that is spanned by all the edges incident to pi is at most α. An α-minimum spanning tree (α-MST) is an α-ST of P of minimum weight, where the weight of an α-ST is the sum of the lengths of its edges. In this paper, we consider the problem of computing an α-MST for the case where α=2π3. We present a 4-approximation algorithm, thus improving upon the previous results of Aschner and Katz and Biniaz et al., who presented algorithms with approximation ratios 6 and 163, respectively.

To obtain this result, we devise an O(n)-time algorithm that, given any Hamiltonian path Π of P, constructs a 2π3-ST T of P, such that T's weight is at most twice that of Π and, moreover, T is a 3-hop spanner of Π. This latter result is optimal (with respect to T's weight), since for any ε>0 there exists a polygonal path for which every 2π3-ST (of the corresponding set of points) has weight greater than 2ε times the weight of the path.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信