Pankaj K. Agarwal , Matthew J. Katz , Micha Sharir
{"title":"关于几何邻近图中的逆最短路径","authors":"Pankaj K. Agarwal , Matthew J. Katz , Micha Sharir","doi":"10.1016/j.comgeo.2023.102053","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>S</em> be a set of <em>n</em><span> geometric objects of constant complexity (e.g., points, line segments, disks, ellipses) in </span><span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, and let <span><math><mi>ϱ</mi><mo>:</mo><mi>S</mi><mo>×</mo><mi>S</mi><mo>→</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>≥</mo><mn>0</mn></mrow></msub></math></span> be a <em>distance function</em> on <em>S</em>. For a parameter <span><math><mi>r</mi><mo>≥</mo><mn>0</mn></math></span>, we define the <em>proximity graph</em> <span><math><mi>G</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>=</mo><mo>(</mo><mi>S</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> where <span><math><mi>E</mi><mo>=</mo><mo>{</mo><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>∈</mo><mi>S</mi><mo>×</mo><mi>S</mi><mo>|</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≠</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mspace></mspace><mi>ϱ</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>≤</mo><mi>r</mi><mo>}</mo></math></span>. Given <em>S</em>, <span><math><mi>s</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mi>S</mi></math></span>, and an integer <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>, the <em>reverse-shortest-path</em> (RSP) problem asks for computing the smallest value <span><math><msup><mrow><mi>r</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>≥</mo><mn>0</mn></math></span> such that <span><math><mi>G</mi><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span> contains a path from <em>s</em> to <em>t</em> of length at most <em>k</em>.</p><p>In this paper we present a general randomized technique that solves the RSP problem efficiently for a large family of geometric objects and distance functions. Using standard, and sometimes more involved, semi-algebraic range-searching techniques, we first give an efficient algorithm for the decision problem, namely, given a value <span><math><mi>r</mi><mo>≥</mo><mn>0</mn></math></span>, determine whether <span><math><mi>G</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span> contains a path from <em>s</em> to <em>t</em> of length at most <em>k</em>. Next, we adapt our decision algorithm and combine it with a random-sampling method to compute <span><math><msup><mrow><mi>r</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, by efficiently performing a binary search over an implicit set of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> candidate ‘critical’ values that contains <span><math><msup><mrow><mi>r</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>.</p><p>We illustrate the versatility of our general technique by applying it to a variety of geometric proximity graphs. For example, we obtain (i) an <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>4</mn><mo>/</mo><mn>3</mn></mrow></msup><mo>)</mo></math></span><span> expected-time randomized algorithm (where </span><span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span> hides <span><math><mrow><mi>polylog</mi></mrow><mo>(</mo><mi>n</mi><mo>)</mo></math></span> factors) for the case where <em>S</em> is a set of (possibly intersecting) line segments in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><mi>ϱ</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>=</mo><msub><mrow><mi>min</mi></mrow><mrow><mi>x</mi><mo>∈</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>y</mi><mo>∈</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><mo></mo><mo>‖</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>‖</mo></math></span> (where <span><math><mo>‖</mo><mo>⋅</mo><mo>‖</mo></math></span> is the Euclidean distance), and (ii) an <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>+</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>4</mn><mo>/</mo><mn>3</mn></mrow></msup><mo>)</mo></math></span> expected-time randomized algorithm for the case where <em>S</em> is a set of <em>m</em> points lying on an <em>x</em><span>-monotone polygonal chain </span><em>T</em> with <em>n</em> vertices, and <span><math><mi>ϱ</mi><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, for <span><math><mi>p</mi><mo>,</mo><mi>q</mi><mo>∈</mo><mi>S</mi></math></span>, is the smallest value <em>h</em> such that the points <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>:</mo><mo>=</mo><mi>p</mi><mo>+</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>h</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mi>q</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>:</mo><mo>=</mo><mi>q</mi><mo>+</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>h</mi><mo>)</mo></math></span> are visible to each other, i.e., all points on the segment <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup><msup><mrow><mi>q</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> lie above or on the polygonal chain <em>T</em>.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On reverse shortest paths in geometric proximity graphs\",\"authors\":\"Pankaj K. Agarwal , Matthew J. Katz , Micha Sharir\",\"doi\":\"10.1016/j.comgeo.2023.102053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>S</em> be a set of <em>n</em><span> geometric objects of constant complexity (e.g., points, line segments, disks, ellipses) in </span><span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, and let <span><math><mi>ϱ</mi><mo>:</mo><mi>S</mi><mo>×</mo><mi>S</mi><mo>→</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>≥</mo><mn>0</mn></mrow></msub></math></span> be a <em>distance function</em> on <em>S</em>. For a parameter <span><math><mi>r</mi><mo>≥</mo><mn>0</mn></math></span>, we define the <em>proximity graph</em> <span><math><mi>G</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>=</mo><mo>(</mo><mi>S</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> where <span><math><mi>E</mi><mo>=</mo><mo>{</mo><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>∈</mo><mi>S</mi><mo>×</mo><mi>S</mi><mo>|</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≠</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mspace></mspace><mi>ϱ</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>≤</mo><mi>r</mi><mo>}</mo></math></span>. Given <em>S</em>, <span><math><mi>s</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mi>S</mi></math></span>, and an integer <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>, the <em>reverse-shortest-path</em> (RSP) problem asks for computing the smallest value <span><math><msup><mrow><mi>r</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>≥</mo><mn>0</mn></math></span> such that <span><math><mi>G</mi><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span> contains a path from <em>s</em> to <em>t</em> of length at most <em>k</em>.</p><p>In this paper we present a general randomized technique that solves the RSP problem efficiently for a large family of geometric objects and distance functions. Using standard, and sometimes more involved, semi-algebraic range-searching techniques, we first give an efficient algorithm for the decision problem, namely, given a value <span><math><mi>r</mi><mo>≥</mo><mn>0</mn></math></span>, determine whether <span><math><mi>G</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span> contains a path from <em>s</em> to <em>t</em> of length at most <em>k</em>. Next, we adapt our decision algorithm and combine it with a random-sampling method to compute <span><math><msup><mrow><mi>r</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, by efficiently performing a binary search over an implicit set of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> candidate ‘critical’ values that contains <span><math><msup><mrow><mi>r</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>.</p><p>We illustrate the versatility of our general technique by applying it to a variety of geometric proximity graphs. For example, we obtain (i) an <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>4</mn><mo>/</mo><mn>3</mn></mrow></msup><mo>)</mo></math></span><span> expected-time randomized algorithm (where </span><span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span> hides <span><math><mrow><mi>polylog</mi></mrow><mo>(</mo><mi>n</mi><mo>)</mo></math></span> factors) for the case where <em>S</em> is a set of (possibly intersecting) line segments in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><mi>ϱ</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>=</mo><msub><mrow><mi>min</mi></mrow><mrow><mi>x</mi><mo>∈</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>y</mi><mo>∈</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><mo></mo><mo>‖</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>‖</mo></math></span> (where <span><math><mo>‖</mo><mo>⋅</mo><mo>‖</mo></math></span> is the Euclidean distance), and (ii) an <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>+</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>4</mn><mo>/</mo><mn>3</mn></mrow></msup><mo>)</mo></math></span> expected-time randomized algorithm for the case where <em>S</em> is a set of <em>m</em> points lying on an <em>x</em><span>-monotone polygonal chain </span><em>T</em> with <em>n</em> vertices, and <span><math><mi>ϱ</mi><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, for <span><math><mi>p</mi><mo>,</mo><mi>q</mi><mo>∈</mo><mi>S</mi></math></span>, is the smallest value <em>h</em> such that the points <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>:</mo><mo>=</mo><mi>p</mi><mo>+</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>h</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mi>q</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>:</mo><mo>=</mo><mi>q</mi><mo>+</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>h</mi><mo>)</mo></math></span> are visible to each other, i.e., all points on the segment <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup><msup><mrow><mi>q</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> lie above or on the polygonal chain <em>T</em>.</p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772123000731\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772123000731","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
On reverse shortest paths in geometric proximity graphs
Let S be a set of n geometric objects of constant complexity (e.g., points, line segments, disks, ellipses) in , and let be a distance function on S. For a parameter , we define the proximity graph where . Given S, , and an integer , the reverse-shortest-path (RSP) problem asks for computing the smallest value such that contains a path from s to t of length at most k.
In this paper we present a general randomized technique that solves the RSP problem efficiently for a large family of geometric objects and distance functions. Using standard, and sometimes more involved, semi-algebraic range-searching techniques, we first give an efficient algorithm for the decision problem, namely, given a value , determine whether contains a path from s to t of length at most k. Next, we adapt our decision algorithm and combine it with a random-sampling method to compute , by efficiently performing a binary search over an implicit set of candidate ‘critical’ values that contains .
We illustrate the versatility of our general technique by applying it to a variety of geometric proximity graphs. For example, we obtain (i) an expected-time randomized algorithm (where hides factors) for the case where S is a set of (possibly intersecting) line segments in and (where is the Euclidean distance), and (ii) an expected-time randomized algorithm for the case where S is a set of m points lying on an x-monotone polygonal chain T with n vertices, and , for , is the smallest value h such that the points and are visible to each other, i.e., all points on the segment lie above or on the polygonal chain T.
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.