R. Gonzalez-Diaz, M. Soriano-Trigueros, A. Torras-Casas
{"title":"持久模间态射引起的部分匹配","authors":"R. Gonzalez-Diaz, M. Soriano-Trigueros, A. Torras-Casas","doi":"10.1016/j.comgeo.2023.101985","DOIUrl":null,"url":null,"abstract":"<div><p>We study how to obtain partial matchings using the block function <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span>, induced by a morphism <em>f</em> between persistence modules. <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> is defined algebraically and is linear with respect to direct sums of morphisms. We study some interesting properties of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span>, and provide a way of obtaining <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> using matrix operations.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partial matchings induced by morphisms between persistence modules\",\"authors\":\"R. Gonzalez-Diaz, M. Soriano-Trigueros, A. Torras-Casas\",\"doi\":\"10.1016/j.comgeo.2023.101985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study how to obtain partial matchings using the block function <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span>, induced by a morphism <em>f</em> between persistence modules. <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> is defined algebraically and is linear with respect to direct sums of morphisms. We study some interesting properties of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span>, and provide a way of obtaining <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> using matrix operations.</p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772123000056\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772123000056","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Partial matchings induced by morphisms between persistence modules
We study how to obtain partial matchings using the block function , induced by a morphism f between persistence modules. is defined algebraically and is linear with respect to direct sums of morphisms. We study some interesting properties of , and provide a way of obtaining using matrix operations.
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.