{"title":"利用遥感分析与气候参数有关的法尔斯省水域的物理变化,Bakhtegan,Tashk,伊朗","authors":"Abouzar Nasiri , Maryam Khosravian , Rahman Zandi , Alireza Entezari , Mohammad Baaghide","doi":"10.1016/j.ejrs.2023.09.003","DOIUrl":null,"url":null,"abstract":"<div><p>In recent decades, severe climate change, decreased precipitation, temperature rise, and increased evapotranspiration (ET) have significantly reduced waterbodies. Furthermore, governments have prioritized the study of water level fluctuations of lakes to protect them from degradation nationally and regionally. The present study investigated the physical changes in lakes Bakhtegan and Tashk due to climatic parameters. To this end, Landsat satellite imagery and the NDWI were employed to calculate the area of the waterbodies from 1986 to 2018. The results showed that the area had decreased during the study period-- since 2009, Lake Bakhtegan had dried up completely. In 2008 and 2010, the lowest precipitation was 127.82 and 107.7 mm, respectively. During the study period (1986 to 2018), the average temperature was 19.44 °C, with an increase of 0.6 °C. Among the climatic parameters, precipitation, with a correlation coefficient of 0.55, and potential evapotranspiration (PET), with a correlation coefficient of about −0.68, were more strongly correlated with changes in the area of the waterbodies. To predict temperature and precipitation in the study area in the coming decades (2020–2050), the HadCM2 model of the CORDEX Project -WAS (South Asia) was used under two scenarios: RCP4.5 and RCP8.5. These scenarios revealed the decrease in precipitation and increase in temperature trends. As a result, the waterbodies’ areas were estimated using the projected precipitation and PET for the period 2050–2020, indicating a decrease in the areas of the waterbodies.</p></div>","PeriodicalId":48539,"journal":{"name":"Egyptian Journal of Remote Sensing and Space Sciences","volume":"26 3","pages":"Pages 851-861"},"PeriodicalIF":3.7000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of physical changes in Fars province water zones related to climatic parameters using remote sensing, Bakhtegan, Tashk, Iran\",\"authors\":\"Abouzar Nasiri , Maryam Khosravian , Rahman Zandi , Alireza Entezari , Mohammad Baaghide\",\"doi\":\"10.1016/j.ejrs.2023.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent decades, severe climate change, decreased precipitation, temperature rise, and increased evapotranspiration (ET) have significantly reduced waterbodies. Furthermore, governments have prioritized the study of water level fluctuations of lakes to protect them from degradation nationally and regionally. The present study investigated the physical changes in lakes Bakhtegan and Tashk due to climatic parameters. To this end, Landsat satellite imagery and the NDWI were employed to calculate the area of the waterbodies from 1986 to 2018. The results showed that the area had decreased during the study period-- since 2009, Lake Bakhtegan had dried up completely. In 2008 and 2010, the lowest precipitation was 127.82 and 107.7 mm, respectively. During the study period (1986 to 2018), the average temperature was 19.44 °C, with an increase of 0.6 °C. Among the climatic parameters, precipitation, with a correlation coefficient of 0.55, and potential evapotranspiration (PET), with a correlation coefficient of about −0.68, were more strongly correlated with changes in the area of the waterbodies. To predict temperature and precipitation in the study area in the coming decades (2020–2050), the HadCM2 model of the CORDEX Project -WAS (South Asia) was used under two scenarios: RCP4.5 and RCP8.5. These scenarios revealed the decrease in precipitation and increase in temperature trends. As a result, the waterbodies’ areas were estimated using the projected precipitation and PET for the period 2050–2020, indicating a decrease in the areas of the waterbodies.</p></div>\",\"PeriodicalId\":48539,\"journal\":{\"name\":\"Egyptian Journal of Remote Sensing and Space Sciences\",\"volume\":\"26 3\",\"pages\":\"Pages 851-861\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Egyptian Journal of Remote Sensing and Space Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S111098232300073X\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Remote Sensing and Space Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S111098232300073X","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Analysis of physical changes in Fars province water zones related to climatic parameters using remote sensing, Bakhtegan, Tashk, Iran
In recent decades, severe climate change, decreased precipitation, temperature rise, and increased evapotranspiration (ET) have significantly reduced waterbodies. Furthermore, governments have prioritized the study of water level fluctuations of lakes to protect them from degradation nationally and regionally. The present study investigated the physical changes in lakes Bakhtegan and Tashk due to climatic parameters. To this end, Landsat satellite imagery and the NDWI were employed to calculate the area of the waterbodies from 1986 to 2018. The results showed that the area had decreased during the study period-- since 2009, Lake Bakhtegan had dried up completely. In 2008 and 2010, the lowest precipitation was 127.82 and 107.7 mm, respectively. During the study period (1986 to 2018), the average temperature was 19.44 °C, with an increase of 0.6 °C. Among the climatic parameters, precipitation, with a correlation coefficient of 0.55, and potential evapotranspiration (PET), with a correlation coefficient of about −0.68, were more strongly correlated with changes in the area of the waterbodies. To predict temperature and precipitation in the study area in the coming decades (2020–2050), the HadCM2 model of the CORDEX Project -WAS (South Asia) was used under two scenarios: RCP4.5 and RCP8.5. These scenarios revealed the decrease in precipitation and increase in temperature trends. As a result, the waterbodies’ areas were estimated using the projected precipitation and PET for the period 2050–2020, indicating a decrease in the areas of the waterbodies.
期刊介绍:
The Egyptian Journal of Remote Sensing and Space Sciences (EJRS) encompasses a comprehensive range of topics within Remote Sensing, Geographic Information Systems (GIS), planetary geology, and space technology development, including theories, applications, and modeling. EJRS aims to disseminate high-quality, peer-reviewed research focusing on the advancement of remote sensing and GIS technologies and their practical applications for effective planning, sustainable development, and environmental resource conservation. The journal particularly welcomes innovative papers with broad scientific appeal.