{"title":"一维点上的值域更新和值域和查询","authors":"Shangqi Lu, Yufei Tao","doi":"10.1016/j.comgeo.2023.102030","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>P</em> be a set of <em>n</em> points in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> where each point <span><math><mi>p</mi><mo>∈</mo><mi>P</mi></math></span> carries a <em>weight</em><span> drawn from a commutative monoid </span><span><math><mo>(</mo><mi>M</mi><mo>,</mo><mo>+</mo><mo>,</mo><mn>0</mn><mo>)</mo></math></span>. Given a <em>d</em>-rectangle <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>upd</mi></mrow></msub></math></span> (i.e., an orthogonal rectangle in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>) and a value <span><math><mi>Δ</mi><mo>∈</mo><mi>M</mi></math></span>, a <em>range update</em> adds Δ to the weight of every point <span><math><mi>p</mi><mo>∈</mo><mi>P</mi><mo>∩</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>upd</mi></mrow></msub></math></span>; given a <em>d</em>-rectangle <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>qry</mi></mrow></msub></math></span>, a <em>range sum query</em> returns the total weight of the points in <span><math><mi>P</mi><mo>∩</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>qry</mi></mrow></msub></math></span>. The goal is to store <em>P</em> in a structure to support updates and queries with attractive performance guarantees. We describe a structure of <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><mi>n</mi><mo>)</mo></math></span> space that handles an update in <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>upd</mi></mrow></msub><mo>)</mo></math></span> time and a query in <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>qry</mi></mrow></msub><mo>)</mo></math></span> time for arbitrary functions <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>upd</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>qry</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> satisfying <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>upd</mi></mrow></msub><mo>⋅</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>qry</mi></mrow></msub><mo>=</mo><mi>n</mi></math></span>. The result holds for any fixed dimensionality <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span><span>. Our query-update tradeoff is tight up to a polylog factor subject to the OMv-conjecture.</span></p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"115 ","pages":"Article 102030"},"PeriodicalIF":0.4000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Range updates and range sum queries on multidimensional points with monoid weights\",\"authors\":\"Shangqi Lu, Yufei Tao\",\"doi\":\"10.1016/j.comgeo.2023.102030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>P</em> be a set of <em>n</em> points in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> where each point <span><math><mi>p</mi><mo>∈</mo><mi>P</mi></math></span> carries a <em>weight</em><span> drawn from a commutative monoid </span><span><math><mo>(</mo><mi>M</mi><mo>,</mo><mo>+</mo><mo>,</mo><mn>0</mn><mo>)</mo></math></span>. Given a <em>d</em>-rectangle <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>upd</mi></mrow></msub></math></span> (i.e., an orthogonal rectangle in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>) and a value <span><math><mi>Δ</mi><mo>∈</mo><mi>M</mi></math></span>, a <em>range update</em> adds Δ to the weight of every point <span><math><mi>p</mi><mo>∈</mo><mi>P</mi><mo>∩</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>upd</mi></mrow></msub></math></span>; given a <em>d</em>-rectangle <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>qry</mi></mrow></msub></math></span>, a <em>range sum query</em> returns the total weight of the points in <span><math><mi>P</mi><mo>∩</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>qry</mi></mrow></msub></math></span>. The goal is to store <em>P</em> in a structure to support updates and queries with attractive performance guarantees. We describe a structure of <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><mi>n</mi><mo>)</mo></math></span> space that handles an update in <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>upd</mi></mrow></msub><mo>)</mo></math></span> time and a query in <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>qry</mi></mrow></msub><mo>)</mo></math></span> time for arbitrary functions <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>upd</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>qry</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> satisfying <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>upd</mi></mrow></msub><mo>⋅</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>qry</mi></mrow></msub><mo>=</mo><mi>n</mi></math></span>. The result holds for any fixed dimensionality <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span><span>. Our query-update tradeoff is tight up to a polylog factor subject to the OMv-conjecture.</span></p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":\"115 \",\"pages\":\"Article 102030\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772123000500\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772123000500","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Range updates and range sum queries on multidimensional points with monoid weights
Let P be a set of n points in where each point carries a weight drawn from a commutative monoid . Given a d-rectangle (i.e., an orthogonal rectangle in ) and a value , a range update adds Δ to the weight of every point ; given a d-rectangle , a range sum query returns the total weight of the points in . The goal is to store P in a structure to support updates and queries with attractive performance guarantees. We describe a structure of space that handles an update in time and a query in time for arbitrary functions and satisfying . The result holds for any fixed dimensionality . Our query-update tradeoff is tight up to a polylog factor subject to the OMv-conjecture.
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.