{"title":"多项式大小整数网格上的多阶类型","authors":"Manfred Scheucher","doi":"10.1016/j.comgeo.2022.101924","DOIUrl":null,"url":null,"abstract":"<div><p>Two sets of labeled points <span><math><mo>{</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></math></span> and <span><math><mo>{</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></math></span> are of the same <span><em>labeled </em><em>order type</em></span> if, for every <span><math><mi>i</mi><mo>,</mo><mi>j</mi><mo>,</mo><mi>k</mi></math></span>, the triples <span><math><mo>(</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> and <span><math><mo>(</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> have the same orientation. In the 1980's, Goodman, Pollack, and Sturmfels showed that (i) the number of labeled order types on <em>n</em> points is of order <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>4</mn><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span>, (ii) all order types can be realized with double-exponential integer coordinates, and that (iii) certain order types indeed require double-exponential integer coordinates. In 2018, Caraballo, Díaz-Báñez, Fabila-Monroy, Hidalgo-Toscano, Leaños, and Montejano showed that at least <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> labeled <em>n</em>-point order types can be realized on an integer grid of polynomial size. In this article, we improve their result by showing that at least <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>4</mn><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> labeled <em>n</em>-point order types can be realized on an integer grid of polynomial size, which is asymptotically tight in the exponent. Finally we conclude that there are <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> order types in the <em>unlabeled</em> setting and that <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> of them can be realized on an integer grid of polynomial size.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Many order types on integer grids of polynomial size\",\"authors\":\"Manfred Scheucher\",\"doi\":\"10.1016/j.comgeo.2022.101924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two sets of labeled points <span><math><mo>{</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></math></span> and <span><math><mo>{</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></math></span> are of the same <span><em>labeled </em><em>order type</em></span> if, for every <span><math><mi>i</mi><mo>,</mo><mi>j</mi><mo>,</mo><mi>k</mi></math></span>, the triples <span><math><mo>(</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> and <span><math><mo>(</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> have the same orientation. In the 1980's, Goodman, Pollack, and Sturmfels showed that (i) the number of labeled order types on <em>n</em> points is of order <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>4</mn><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span>, (ii) all order types can be realized with double-exponential integer coordinates, and that (iii) certain order types indeed require double-exponential integer coordinates. In 2018, Caraballo, Díaz-Báñez, Fabila-Monroy, Hidalgo-Toscano, Leaños, and Montejano showed that at least <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> labeled <em>n</em>-point order types can be realized on an integer grid of polynomial size. In this article, we improve their result by showing that at least <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>4</mn><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> labeled <em>n</em>-point order types can be realized on an integer grid of polynomial size, which is asymptotically tight in the exponent. Finally we conclude that there are <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> order types in the <em>unlabeled</em> setting and that <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> of them can be realized on an integer grid of polynomial size.</p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772122000670\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772122000670","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Many order types on integer grids of polynomial size
Two sets of labeled points and are of the same labeled order type if, for every , the triples and have the same orientation. In the 1980's, Goodman, Pollack, and Sturmfels showed that (i) the number of labeled order types on n points is of order , (ii) all order types can be realized with double-exponential integer coordinates, and that (iii) certain order types indeed require double-exponential integer coordinates. In 2018, Caraballo, Díaz-Báñez, Fabila-Monroy, Hidalgo-Toscano, Leaños, and Montejano showed that at least labeled n-point order types can be realized on an integer grid of polynomial size. In this article, we improve their result by showing that at least labeled n-point order types can be realized on an integer grid of polynomial size, which is asymptotically tight in the exponent. Finally we conclude that there are order types in the unlabeled setting and that of them can be realized on an integer grid of polynomial size.
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.