多项式大小整数网格上的多阶类型

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Manfred Scheucher
{"title":"多项式大小整数网格上的多阶类型","authors":"Manfred Scheucher","doi":"10.1016/j.comgeo.2022.101924","DOIUrl":null,"url":null,"abstract":"<div><p>Two sets of labeled points <span><math><mo>{</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></math></span> and <span><math><mo>{</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></math></span> are of the same <span><em>labeled </em><em>order type</em></span> if, for every <span><math><mi>i</mi><mo>,</mo><mi>j</mi><mo>,</mo><mi>k</mi></math></span>, the triples <span><math><mo>(</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> and <span><math><mo>(</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> have the same orientation. In the 1980's, Goodman, Pollack, and Sturmfels showed that (i) the number of labeled order types on <em>n</em> points is of order <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>4</mn><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span>, (ii) all order types can be realized with double-exponential integer coordinates, and that (iii) certain order types indeed require double-exponential integer coordinates. In 2018, Caraballo, Díaz-Báñez, Fabila-Monroy, Hidalgo-Toscano, Leaños, and Montejano showed that at least <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> labeled <em>n</em>-point order types can be realized on an integer grid of polynomial size. In this article, we improve their result by showing that at least <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>4</mn><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> labeled <em>n</em>-point order types can be realized on an integer grid of polynomial size, which is asymptotically tight in the exponent. Finally we conclude that there are <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> order types in the <em>unlabeled</em> setting and that <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> of them can be realized on an integer grid of polynomial size.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Many order types on integer grids of polynomial size\",\"authors\":\"Manfred Scheucher\",\"doi\":\"10.1016/j.comgeo.2022.101924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two sets of labeled points <span><math><mo>{</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></math></span> and <span><math><mo>{</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></math></span> are of the same <span><em>labeled </em><em>order type</em></span> if, for every <span><math><mi>i</mi><mo>,</mo><mi>j</mi><mo>,</mo><mi>k</mi></math></span>, the triples <span><math><mo>(</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> and <span><math><mo>(</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> have the same orientation. In the 1980's, Goodman, Pollack, and Sturmfels showed that (i) the number of labeled order types on <em>n</em> points is of order <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>4</mn><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span>, (ii) all order types can be realized with double-exponential integer coordinates, and that (iii) certain order types indeed require double-exponential integer coordinates. In 2018, Caraballo, Díaz-Báñez, Fabila-Monroy, Hidalgo-Toscano, Leaños, and Montejano showed that at least <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> labeled <em>n</em>-point order types can be realized on an integer grid of polynomial size. In this article, we improve their result by showing that at least <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>4</mn><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> labeled <em>n</em>-point order types can be realized on an integer grid of polynomial size, which is asymptotically tight in the exponent. Finally we conclude that there are <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> order types in the <em>unlabeled</em> setting and that <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> of them can be realized on an integer grid of polynomial size.</p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772122000670\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772122000670","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果对于每个i,j,k,三元组(pi,pj,pk)和(qi,qj,qk)具有相同的方向,则两组标记点{p1,…,pn}和{q1,…,qn}具有相同的标记次序类型。在20世纪80年代,Goodman、Pollack和Sturmfels证明了(i)n点上的标记阶类型的数量为n4n+o(n)阶,(ii)所有阶类型都可以用双指数整数坐标来实现,并且(iii)某些阶类型确实需要双指数整数坐标。2018年,Caraballo、Díaz-Báñez、Fabila Monroy、Hidalgo Toscano、Leaños和Montejano证明,至少n3n+o(n)标记的n点阶类型可以在多项式大小的整数网格上实现。在本文中,我们改进了他们的结果,证明至少n4n+o(n)标记的n点阶类型可以在多项式大小的整数网格上实现,该整数网格在指数上是渐近紧的。最后,我们得出结论,在未标记的集合中存在n3n+o(n)阶类型,其中n3n+o(n)可以在多项式大小的整数网格上实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Many order types on integer grids of polynomial size

Two sets of labeled points {p1,,pn} and {q1,,qn} are of the same labeled order type if, for every i,j,k, the triples (pi,pj,pk) and (qi,qj,qk) have the same orientation. In the 1980's, Goodman, Pollack, and Sturmfels showed that (i) the number of labeled order types on n points is of order n4n+o(n), (ii) all order types can be realized with double-exponential integer coordinates, and that (iii) certain order types indeed require double-exponential integer coordinates. In 2018, Caraballo, Díaz-Báñez, Fabila-Monroy, Hidalgo-Toscano, Leaños, and Montejano showed that at least n3n+o(n) labeled n-point order types can be realized on an integer grid of polynomial size. In this article, we improve their result by showing that at least n4n+o(n) labeled n-point order types can be realized on an integer grid of polynomial size, which is asymptotically tight in the exponent. Finally we conclude that there are n3n+o(n) order types in the unlabeled setting and that n3n+o(n) of them can be realized on an integer grid of polynomial size.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信