Rachel Friederich, Anirban Ghosh, Matthew Graham, Brian Hicks, Ronald Shevchenko
{"title":"覆盖海量点集的单元盘覆盖算法实验","authors":"Rachel Friederich, Anirban Ghosh, Matthew Graham, Brian Hicks, Ronald Shevchenko","doi":"10.1016/j.comgeo.2022.101925","DOIUrl":null,"url":null,"abstract":"<div><p>Given a set of <em>n</em><span> points in the plane, the Unit Disk Cover (UDC) problem asks to compute the minimum number of unit disks required to cover the points, along with a placement of the disks. The problem is NP-hard and several approximation algorithms have been designed over the last three decades. In this paper, we have engineered and experimentally compared practical performances of some of these algorithms on massive pointsets. The goal is to investigate which algorithms run fast and give good approximation in practice.</span></p><p>We present a simple 7-approximation algorithm for UDC that runs in <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> expected time and uses <span><math><mi>O</mi><mo>(</mo><mi>s</mi><mo>)</mo></math></span> extra space, where <em>s</em> denotes the size of the generated cover. In our experiments, it turned out to be the speediest of all. We also present two heuristics to reduce the sizes of covers generated by it without slowing it down by much.</p><p>To our knowledge, this is the first work that experimentally compares algorithms for the UDC problem. Experiments with them using massive pointsets (in the order of millions) throw light on their practical uses. We share the engineered algorithms via <span>GitHub</span><span><sup>1</sup></span> for broader uses and future research in the domain of geometric optimization.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experiments with unit disk cover algorithms for covering massive pointsets\",\"authors\":\"Rachel Friederich, Anirban Ghosh, Matthew Graham, Brian Hicks, Ronald Shevchenko\",\"doi\":\"10.1016/j.comgeo.2022.101925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a set of <em>n</em><span> points in the plane, the Unit Disk Cover (UDC) problem asks to compute the minimum number of unit disks required to cover the points, along with a placement of the disks. The problem is NP-hard and several approximation algorithms have been designed over the last three decades. In this paper, we have engineered and experimentally compared practical performances of some of these algorithms on massive pointsets. The goal is to investigate which algorithms run fast and give good approximation in practice.</span></p><p>We present a simple 7-approximation algorithm for UDC that runs in <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> expected time and uses <span><math><mi>O</mi><mo>(</mo><mi>s</mi><mo>)</mo></math></span> extra space, where <em>s</em> denotes the size of the generated cover. In our experiments, it turned out to be the speediest of all. We also present two heuristics to reduce the sizes of covers generated by it without slowing it down by much.</p><p>To our knowledge, this is the first work that experimentally compares algorithms for the UDC problem. Experiments with them using massive pointsets (in the order of millions) throw light on their practical uses. We share the engineered algorithms via <span>GitHub</span><span><sup>1</sup></span> for broader uses and future research in the domain of geometric optimization.</p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772122000682\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772122000682","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Experiments with unit disk cover algorithms for covering massive pointsets
Given a set of n points in the plane, the Unit Disk Cover (UDC) problem asks to compute the minimum number of unit disks required to cover the points, along with a placement of the disks. The problem is NP-hard and several approximation algorithms have been designed over the last three decades. In this paper, we have engineered and experimentally compared practical performances of some of these algorithms on massive pointsets. The goal is to investigate which algorithms run fast and give good approximation in practice.
We present a simple 7-approximation algorithm for UDC that runs in expected time and uses extra space, where s denotes the size of the generated cover. In our experiments, it turned out to be the speediest of all. We also present two heuristics to reduce the sizes of covers generated by it without slowing it down by much.
To our knowledge, this is the first work that experimentally compares algorithms for the UDC problem. Experiments with them using massive pointsets (in the order of millions) throw light on their practical uses. We share the engineered algorithms via GitHub1 for broader uses and future research in the domain of geometric optimization.
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.