有向图中的单纯形闭概率

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Florian Unger , Jonathan Krebs , Michael G. Müller
{"title":"有向图中的单纯形闭概率","authors":"Florian Unger ,&nbsp;Jonathan Krebs ,&nbsp;Michael G. Müller","doi":"10.1016/j.comgeo.2022.101941","DOIUrl":null,"url":null,"abstract":"<div><p>Recent work in mathematical neuroscience has calculated the directed graph homology of the directed simplicial complex given by the brain's sparse adjacency graph, the so called connectome. These biological connectomes show an abundance of both high-dimensional directed simplices and Betti-numbers in all viable dimensions – in contrast to Erdős–Rényi-graphs of comparable size and density. An analysis of synthetically trained connectomes reveals similar findings, raising questions about the graphs comparability and the nature of origin of the simplices.</p><p>We present a new method capable of delivering insight into the emergence of simplices and thus simplicial abundance. Our approach allows to easily distinguish simplex-rich connectomes of different origin. The method relies on the novel concept of an almost-d-simplex, that is, a simplex missing exactly one edge, and consequently the almost-d-simplex closing probability by dimension. We also describe a fast algorithm to identify almost-d-simplices in a given graph. Applying this method to biological and artificial data allows us to identify a mechanism responsible for simplex emergence, and suggests this mechanism is responsible for the simplex signature of the excitatory subnetwork of a statistical reconstruction of the mouse primary visual cortex. Our highly optimized code for this new method is publicly available.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Simplex closing probabilities in directed graphs\",\"authors\":\"Florian Unger ,&nbsp;Jonathan Krebs ,&nbsp;Michael G. Müller\",\"doi\":\"10.1016/j.comgeo.2022.101941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent work in mathematical neuroscience has calculated the directed graph homology of the directed simplicial complex given by the brain's sparse adjacency graph, the so called connectome. These biological connectomes show an abundance of both high-dimensional directed simplices and Betti-numbers in all viable dimensions – in contrast to Erdős–Rényi-graphs of comparable size and density. An analysis of synthetically trained connectomes reveals similar findings, raising questions about the graphs comparability and the nature of origin of the simplices.</p><p>We present a new method capable of delivering insight into the emergence of simplices and thus simplicial abundance. Our approach allows to easily distinguish simplex-rich connectomes of different origin. The method relies on the novel concept of an almost-d-simplex, that is, a simplex missing exactly one edge, and consequently the almost-d-simplex closing probability by dimension. We also describe a fast algorithm to identify almost-d-simplices in a given graph. Applying this method to biological and artificial data allows us to identify a mechanism responsible for simplex emergence, and suggests this mechanism is responsible for the simplex signature of the excitatory subnetwork of a statistical reconstruction of the mouse primary visual cortex. Our highly optimized code for this new method is publicly available.</p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772122000840\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772122000840","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

最近在数学神经科学中的工作已经计算了大脑的稀疏邻接图(即所谓的连接组)给出的有向单纯复合体的有向图同源性。这些生物连接体在所有可行维度上都显示出丰富的高维有向单形和Betti数,而大小和密度相当的Erdõs–Rényi图则相反。对综合训练的连接体的分析揭示了类似的发现,这引发了对图的可比性和单形起源性质的质疑。我们提出了一种新的方法,能够深入了解单纯形的出现,从而了解单纯形的丰富性。我们的方法可以很容易地区分不同来源的富含单纯形的连接体。该方法依赖于几乎d-单纯形的新概念,即恰好缺少一条边的单纯形,从而依赖于几乎d-单纯形的维数闭合概率。我们还描述了一种快速算法来识别给定图中的几乎d-单形。将这种方法应用于生物和人工数据使我们能够确定导致单倍型出现的机制,并表明这种机制是小鼠初级视觉皮层统计重建兴奋性子网络的单倍型特征的原因。我们为这个新方法高度优化的代码是公开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simplex closing probabilities in directed graphs

Recent work in mathematical neuroscience has calculated the directed graph homology of the directed simplicial complex given by the brain's sparse adjacency graph, the so called connectome. These biological connectomes show an abundance of both high-dimensional directed simplices and Betti-numbers in all viable dimensions – in contrast to Erdős–Rényi-graphs of comparable size and density. An analysis of synthetically trained connectomes reveals similar findings, raising questions about the graphs comparability and the nature of origin of the simplices.

We present a new method capable of delivering insight into the emergence of simplices and thus simplicial abundance. Our approach allows to easily distinguish simplex-rich connectomes of different origin. The method relies on the novel concept of an almost-d-simplex, that is, a simplex missing exactly one edge, and consequently the almost-d-simplex closing probability by dimension. We also describe a fast algorithm to identify almost-d-simplices in a given graph. Applying this method to biological and artificial data allows us to identify a mechanism responsible for simplex emergence, and suggests this mechanism is responsible for the simplex signature of the excitatory subnetwork of a statistical reconstruction of the mouse primary visual cortex. Our highly optimized code for this new method is publicly available.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信