在接近最优的空间和时间中导航平面拓扑

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
José Fuentes-Sepúlveda , Gonzalo Navarro , Diego Seco
{"title":"在接近最优的空间和时间中导航平面拓扑","authors":"José Fuentes-Sepúlveda ,&nbsp;Gonzalo Navarro ,&nbsp;Diego Seco","doi":"10.1016/j.comgeo.2022.101922","DOIUrl":null,"url":null,"abstract":"<div><p><span>We show that any embedding of a planar graph can be encoded succinctly while efficiently answering a number of topological queries near-optimally. More precisely, we build on a succinct representation that encodes an embedding of </span><em>m</em> edges within 4<em>m</em> bits, which is close to the information-theoretic lower bound of about 3.58<em>m</em>. With <span><math><mn>4</mn><mi>m</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>m</mi><mo>)</mo></math></span> bits of space, we show how to answer a number of topological queries relating nodes, edges, and faces, most of them in any time in <span><math><mi>ω</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>. Indeed, <span><math><mn>3.58</mn><mi>m</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>m</mi><mo>)</mo></math></span> bits suffice if the graph has no self-loops and no nodes of degree one. Further, we show that with <span><math><mi>O</mi><mo>(</mo><mi>m</mi><mo>)</mo></math></span> bits of space we can solve all those operations in <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> time.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Navigating planar topologies in near-optimal space and time\",\"authors\":\"José Fuentes-Sepúlveda ,&nbsp;Gonzalo Navarro ,&nbsp;Diego Seco\",\"doi\":\"10.1016/j.comgeo.2022.101922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We show that any embedding of a planar graph can be encoded succinctly while efficiently answering a number of topological queries near-optimally. More precisely, we build on a succinct representation that encodes an embedding of </span><em>m</em> edges within 4<em>m</em> bits, which is close to the information-theoretic lower bound of about 3.58<em>m</em>. With <span><math><mn>4</mn><mi>m</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>m</mi><mo>)</mo></math></span> bits of space, we show how to answer a number of topological queries relating nodes, edges, and faces, most of them in any time in <span><math><mi>ω</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>. Indeed, <span><math><mn>3.58</mn><mi>m</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>m</mi><mo>)</mo></math></span> bits suffice if the graph has no self-loops and no nodes of degree one. Further, we show that with <span><math><mi>O</mi><mo>(</mo><mi>m</mi><mo>)</mo></math></span> bits of space we can solve all those operations in <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> time.</p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772122000657\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772122000657","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了平面图的任何嵌入都可以被简洁地编码,同时有效地回答许多接近最优的拓扑查询。更准确地说,我们建立在一个简洁的表示基础上,该表示将m条边嵌入4m位中,这接近于约3.58m的信息论下界。使用4m+o(m)位的空间,我们展示了如何回答与节点、边和面有关的许多拓扑查询,其中大多数在ω(1)中的任何时间。事实上,如果图没有自循环和一阶节点,3.58m+o(m)位就足够了。此外,我们证明了使用O(m)位的空间,我们可以在O(1)时间内求解所有这些运算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Navigating planar topologies in near-optimal space and time

We show that any embedding of a planar graph can be encoded succinctly while efficiently answering a number of topological queries near-optimally. More precisely, we build on a succinct representation that encodes an embedding of m edges within 4m bits, which is close to the information-theoretic lower bound of about 3.58m. With 4m+o(m) bits of space, we show how to answer a number of topological queries relating nodes, edges, and faces, most of them in any time in ω(1). Indeed, 3.58m+o(m) bits suffice if the graph has no self-loops and no nodes of degree one. Further, we show that with O(m) bits of space we can solve all those operations in O(1) time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信