分解过滤链复合体:条形码算法背后的几何结构

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Wojciech Chachólski, Barbara Giunti, Alvin Jin, Claudia Landi
{"title":"分解过滤链复合体:条形码算法背后的几何结构","authors":"Wojciech Chachólski,&nbsp;Barbara Giunti,&nbsp;Alvin Jin,&nbsp;Claudia Landi","doi":"10.1016/j.comgeo.2022.101938","DOIUrl":null,"url":null,"abstract":"<div><p>In Topological Data Analysis, filtered chain complexes enter the persistence pipeline between the initial filtering of data and the final persistence invariants extraction. It is known that they admit a tame class of indecomposables, called interval spheres. In this paper, we provide an algorithm to decompose filtered chain complexes into such interval spheres. This algorithm provides geometric insights into various aspects of the standard persistence algorithm and two of its runtime optimizations. Moreover, since it works for any filtered chain complexes, our algorithm can be applied in more general cases. As an application, we show how to decompose filtered kernels with it.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Decomposing filtered chain complexes: Geometry behind barcoding algorithms\",\"authors\":\"Wojciech Chachólski,&nbsp;Barbara Giunti,&nbsp;Alvin Jin,&nbsp;Claudia Landi\",\"doi\":\"10.1016/j.comgeo.2022.101938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In Topological Data Analysis, filtered chain complexes enter the persistence pipeline between the initial filtering of data and the final persistence invariants extraction. It is known that they admit a tame class of indecomposables, called interval spheres. In this paper, we provide an algorithm to decompose filtered chain complexes into such interval spheres. This algorithm provides geometric insights into various aspects of the standard persistence algorithm and two of its runtime optimizations. Moreover, since it works for any filtered chain complexes, our algorithm can be applied in more general cases. As an application, we show how to decompose filtered kernels with it.</p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772122000815\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772122000815","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

在拓扑数据分析中,过滤后的链复合体进入数据初始过滤和最终持久不变量提取之间的持久性管道。众所周知,他们承认了一类温和的不可分解物,称为区间球。在本文中,我们提供了一种将过滤链复合物分解为这样的区间球的算法。该算法为标准持久性算法的各个方面及其两个运行时优化提供了几何见解。此外,由于它适用于任何过滤链复合体,我们的算法可以应用于更一般的情况。作为一个应用程序,我们展示了如何使用它分解过滤后的内核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decomposing filtered chain complexes: Geometry behind barcoding algorithms

In Topological Data Analysis, filtered chain complexes enter the persistence pipeline between the initial filtering of data and the final persistence invariants extraction. It is known that they admit a tame class of indecomposables, called interval spheres. In this paper, we provide an algorithm to decompose filtered chain complexes into such interval spheres. This algorithm provides geometric insights into various aspects of the standard persistence algorithm and two of its runtime optimizations. Moreover, since it works for any filtered chain complexes, our algorithm can be applied in more general cases. As an application, we show how to decompose filtered kernels with it.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信