Prosenjit Bose , Paz Carmi , Vida Dujmović , Saeed Mehrabi , Fabrizio Montecchiani , Pat Morin , Luís Fernando Schultz Xavier da Silveira
{"title":"图的大地障碍表示","authors":"Prosenjit Bose , Paz Carmi , Vida Dujmović , Saeed Mehrabi , Fabrizio Montecchiani , Pat Morin , Luís Fernando Schultz Xavier da Silveira","doi":"10.1016/j.comgeo.2022.101946","DOIUrl":null,"url":null,"abstract":"<div><p>An <em>obstacle representation</em> of a graph is a mapping of the vertices onto points in the plane and a set of connected regions of the plane (called <em>obstacles</em>) such that the straight-line segment connecting the points corresponding to two vertices does not intersect any obstacles if and only if the vertices are adjacent in the graph. Recently, Biedl and Mehrabi (Graph Drawing 2017) studied <em>non-blocking grid obstacle representations</em> of graphs in which the vertices of the graph are mapped onto points in the plane while the straight-line segments representing the adjacency between the vertices are replaced by the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> (Manhattan) shortest paths in the plane that avoid obstacles.</p><p>In this paper, we introduce the notion of <em>geodesic obstacle representations</em><span> of graphs with the main goal of providing a generalized model, which comes naturally when viewing line segments as shortest paths in the Euclidean plane. To this end, we extend the definition of obstacle representation by allowing </span><em>some</em> obstacles-avoiding shortest path between the corresponding points in the underlying metric space whenever the vertices are adjacent in the graph. We consider both <em>general</em> and <em>plane</em> variants of geodesic obstacle representations (in a similar sense to obstacle representations) under any polyhedral distance function in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> as well as shortest path distances in graphs. Our results generalize and unify the notions of obstacle representations, plane obstacle representations and grid obstacle representations, leading to a number of questions on such representations.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geodesic obstacle representation of graphs\",\"authors\":\"Prosenjit Bose , Paz Carmi , Vida Dujmović , Saeed Mehrabi , Fabrizio Montecchiani , Pat Morin , Luís Fernando Schultz Xavier da Silveira\",\"doi\":\"10.1016/j.comgeo.2022.101946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An <em>obstacle representation</em> of a graph is a mapping of the vertices onto points in the plane and a set of connected regions of the plane (called <em>obstacles</em>) such that the straight-line segment connecting the points corresponding to two vertices does not intersect any obstacles if and only if the vertices are adjacent in the graph. Recently, Biedl and Mehrabi (Graph Drawing 2017) studied <em>non-blocking grid obstacle representations</em> of graphs in which the vertices of the graph are mapped onto points in the plane while the straight-line segments representing the adjacency between the vertices are replaced by the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> (Manhattan) shortest paths in the plane that avoid obstacles.</p><p>In this paper, we introduce the notion of <em>geodesic obstacle representations</em><span> of graphs with the main goal of providing a generalized model, which comes naturally when viewing line segments as shortest paths in the Euclidean plane. To this end, we extend the definition of obstacle representation by allowing </span><em>some</em> obstacles-avoiding shortest path between the corresponding points in the underlying metric space whenever the vertices are adjacent in the graph. We consider both <em>general</em> and <em>plane</em> variants of geodesic obstacle representations (in a similar sense to obstacle representations) under any polyhedral distance function in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> as well as shortest path distances in graphs. Our results generalize and unify the notions of obstacle representations, plane obstacle representations and grid obstacle representations, leading to a number of questions on such representations.</p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092577212200089X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092577212200089X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
An obstacle representation of a graph is a mapping of the vertices onto points in the plane and a set of connected regions of the plane (called obstacles) such that the straight-line segment connecting the points corresponding to two vertices does not intersect any obstacles if and only if the vertices are adjacent in the graph. Recently, Biedl and Mehrabi (Graph Drawing 2017) studied non-blocking grid obstacle representations of graphs in which the vertices of the graph are mapped onto points in the plane while the straight-line segments representing the adjacency between the vertices are replaced by the (Manhattan) shortest paths in the plane that avoid obstacles.
In this paper, we introduce the notion of geodesic obstacle representations of graphs with the main goal of providing a generalized model, which comes naturally when viewing line segments as shortest paths in the Euclidean plane. To this end, we extend the definition of obstacle representation by allowing some obstacles-avoiding shortest path between the corresponding points in the underlying metric space whenever the vertices are adjacent in the graph. We consider both general and plane variants of geodesic obstacle representations (in a similar sense to obstacle representations) under any polyhedral distance function in as well as shortest path distances in graphs. Our results generalize and unify the notions of obstacle representations, plane obstacle representations and grid obstacle representations, leading to a number of questions on such representations.
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.