穿透成对相交圆盘的简单线性时间算法

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Ahmad Biniaz , Prosenjit Bose , Yunkai Wang
{"title":"穿透成对相交圆盘的简单线性时间算法","authors":"Ahmad Biniaz ,&nbsp;Prosenjit Bose ,&nbsp;Yunkai Wang","doi":"10.1016/j.comgeo.2023.102011","DOIUrl":null,"url":null,"abstract":"<div><p>A set <span><math><mi>D</mi></math></span> of disks in the plane is said to be pierced by a point set <em>P</em> if each disk in <span><math><mi>D</mi></math></span> contains a point of <em>P</em>. Any set of pairwise intersecting unit disks can be pierced by 3 points (Hadwiger and Debrunner (1955) <span>[7]</span>). Stachó and independently Danzer established that any set of pairwise intersecting arbitrary disks can be pierced by 4 points (Stachó (1981–1984) <span>[16]</span>. Danzer (1986) <span>[4]</span><span>). Existing linear-time algorithms for finding a set of 4 or 5 points that pierce pairwise intersecting disks of arbitrary radius use the LP-type problem as a subroutine. We present simple linear-time algorithms for finding 3 points for piercing pairwise intersecting unit disks, and 5 points for piercing pairwise intersecting disks of arbitrary radius. Our algorithms use simple geometric transformations and avoid heavy machinery. We also show that 3 points are sometimes necessary for piercing pairwise intersecting unit disks.</span></p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simple linear time algorithms for piercing pairwise intersecting disks\",\"authors\":\"Ahmad Biniaz ,&nbsp;Prosenjit Bose ,&nbsp;Yunkai Wang\",\"doi\":\"10.1016/j.comgeo.2023.102011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A set <span><math><mi>D</mi></math></span> of disks in the plane is said to be pierced by a point set <em>P</em> if each disk in <span><math><mi>D</mi></math></span> contains a point of <em>P</em>. Any set of pairwise intersecting unit disks can be pierced by 3 points (Hadwiger and Debrunner (1955) <span>[7]</span>). Stachó and independently Danzer established that any set of pairwise intersecting arbitrary disks can be pierced by 4 points (Stachó (1981–1984) <span>[16]</span>. Danzer (1986) <span>[4]</span><span>). Existing linear-time algorithms for finding a set of 4 or 5 points that pierce pairwise intersecting disks of arbitrary radius use the LP-type problem as a subroutine. We present simple linear-time algorithms for finding 3 points for piercing pairwise intersecting unit disks, and 5 points for piercing pairwise intersecting disks of arbitrary radius. Our algorithms use simple geometric transformations and avoid heavy machinery. We also show that 3 points are sometimes necessary for piercing pairwise intersecting unit disks.</span></p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772123000317\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772123000317","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

如果平面中的一组圆盘D包含P的一个点,则称平面中的圆盘D被点集P刺穿。任何一组成对相交的单位圆盘都可以被3个点刺穿(Hadwiger和Debrunner(1955)[7])。Stachó和Danzer独立地建立了任何一组成对相交的任意圆盘都可以被4个点刺穿(Stachó(1981–1984)[16]。Danzer(1986)[4])。现有的线性时间算法用于寻找穿透任意半径的成对相交圆盘的4或5个点的集合,使用LP型问题作为子程序。我们提出了简单的线性时间算法,用于寻找穿透成对相交单位圆盘的3个点,以及穿透任意半径的成对相交圆盘的5个点。我们的算法使用简单的几何变换,避免使用重型机械。我们还证明,有时需要3个点来穿透成对相交的单位圆盘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simple linear time algorithms for piercing pairwise intersecting disks

A set D of disks in the plane is said to be pierced by a point set P if each disk in D contains a point of P. Any set of pairwise intersecting unit disks can be pierced by 3 points (Hadwiger and Debrunner (1955) [7]). Stachó and independently Danzer established that any set of pairwise intersecting arbitrary disks can be pierced by 4 points (Stachó (1981–1984) [16]. Danzer (1986) [4]). Existing linear-time algorithms for finding a set of 4 or 5 points that pierce pairwise intersecting disks of arbitrary radius use the LP-type problem as a subroutine. We present simple linear-time algorithms for finding 3 points for piercing pairwise intersecting unit disks, and 5 points for piercing pairwise intersecting disks of arbitrary radius. Our algorithms use simple geometric transformations and avoid heavy machinery. We also show that 3 points are sometimes necessary for piercing pairwise intersecting unit disks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信